1887
Volume 22, Issue 2
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

Time-lapse numerical seismic modelling based on rock physics studies was for the first time applied to analyse the feasibility of CO storage monitoring in the largest Latvian offshore geological structure E6 in the Baltic Sea. The novelty of this approach was the coupling of the chemically induced petrophysical alteration effect of CO-hosting rocks measured in laboratory with time-lapse numerical seismic modelling. Synthetic seismograms were computed for the E6 structure, where the sandstone reservoir of the Deimena Formation of Cambrian Series 3 (earlier Middle Cambrian) was saturated with different concentrations of CO. The synthetic seismograms obtained after CO injection were compared with the baseline. The following four scenarios were considered: (1) a uniform model without the alteration effect; (2) a uniform model with the alteration effect; (3) a plume model without the alteration effect; and (4) a plume model with the alteration effect.

The presence of CO in the reservoir layers can be detected by direct comparison and interpretation of plane-wave synthetic seismic sections, and is clearly observed when one displays the difference between the baseline and post-CO injection synthetics. The normalized root-mean-square imaging techniques also clearly highlight the time-lapse differences between the baseline and post-injection seismic data.

The laboratory-conducted alteration of the petrophysical properties of the reservoir had a strong influence on the reflected signals in the seismic sections. The greatest difference was revealed on seismic sections with 1% CO saturation, increasing the detectability of the stored CO. The difference decreased with an increase in CO content.

The saturation of CO could be qualitatively estimated up to a value of 5%. Higher saturation produced a strong signal in the repeatability metrics but the seismic velocity varied so slightly with the increasing gas content that the estimation was challenging. A time shift or push-down of the reflectors below the CO storage area was observed for all scenarios.

According to changes in the amplitude and two-way travel times in the presence of CO, reflection seismics could detect CO injected into the deep aquifer formations even with low CO saturation values.

Our data showed the effectiveness of the implemented time-lapse rock physics and seismic methods in the monitoring of the CO plume evolution and migration in the E6 offshore oil-bearing structure. The new results obtained could be applied to other prospective structures in the Baltic region.

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2015-017
2016-03-22
2024-04-27
Loading full text...

Full text loading...

References

  1. Andrushenko, J., Vzosek, R. et al.
    1985. Report on the results of drilling and geological and geophysical studies in the exploration well Е6-1/84. Unpublished exploration report of E6-1/84 offshore well. Latvian Environmental, Geology and Meteorology Centre (LEGMC), Riga, Latvia (in Russian).
    [Google Scholar]
  2. Arts, R., Brevik, I., Eiken, O., Sollie, R., Causse, E. & van der Meer, B.
    2000. Geophysical methods for monitoring marine aquifer CO2 storage – Sleipner experiences. In: Williams, D., Durie, B., McMullan, P., Paulson, C. & Smith, A. (eds) Proceeding of the 5th International Conference on Greenhouse Control Technologies, Cairns. CSIRO, Collingwood, Australia, 366–371, https://www.sintef.no/globalassets/project/ik23430000-sacs/publications/arts_et_al_ghgt5.pdf
    [Google Scholar]
  3. Arts, R., Eiken, O., Chadwick, R.A., Zweigel, P., Van der Meer, L. & Zinszner, B.
    2003. Monitoring of CO2 injected at Sleipner using time lapse seismic data. In: Gale, J. & Kaya, Y. (eds) Greenhouse Gas Control Technologies. Elsevier, Oxford, 347–352.
    [Google Scholar]
  4. Arts, R., Eiken, O., Chadwick, R.A., Zweigel, P., van der Meer, L. & Zinszner, B.
    2004a. Monitoring of CO2 injected at Sleipner using time-lapse seismic data. In: Energy, 6th International Conference on Greenhouse Gas Control Technologies, Elsevier, Oxford, 29, 1383–1392.
    [Google Scholar]
  5. Arts, R., Eiken, O., Chadwick, R.A., Zweigel, P., van der Meer, L. & Kirby, G.A.
    2004b. Seismic monitoring at the Sleipner underground CO2 storage site (North Sea). In: Baines, S. & Worden, R.J. (eds) Geological Storage for CO2 Emissions Reduction. Geological Society, London, Special Publications, 233, 181–191, http://doi.org/10.1144/GSL.SP.2004.233.01.12
    [Google Scholar]
  6. Arts, R., Chadwick, A., Eiken, O., Thibeau, S. & Nooner, S.
    2008. Ten years of experience of monitoring CO2 injection in the Utsira Sand at Sleipner, offshore Norway. First Break, 26, 65–72.
    [Google Scholar]
  7. Bachu, S., Bonijoly, D., Bradshaw, J., Burruss, R., Holloway, S., Christensen, N.P. & Mathiassen, O.M.
    2007. CO2 storage capacity estimation: Methodology and gaps. International Journal of Greenhouse Gas Control, 1, 430–443.
    [Google Scholar]
  8. Bacon, M., Simm, R. & Redshaw, T.
    2003. 3-D Seismic Interpretation. Cambridge University Press, Cambridge.
    [Google Scholar]
  9. Batzle, M. & Wang, Z.
    1992. Seismic properties of pore fluids. Geophysics, 57, 1396–1408.
    [Google Scholar]
  10. Bickle, M., Chadwick, A., Huppert, H.E., Hallworth, M. & Lyle, S.
    2007. Modelling carbon dioxide accumulation at Sleipner: Implications for underground carbon storage. Earth and Planetary Science Letters, 255, 164–176.
    [Google Scholar]
  11. Boait, F., White, N., Bickle, M., Chadwick, R., Neufeld, J. & Huppert, H.
    2012. Spatial and temporal evolution of injected CO2 at the Sleipner field, North Sea. Journal of Geophysical Research: Solid Earth, 117, 1978–2012.
    [Google Scholar]
  12. Böhm, G., Carcione, J.M., Gei, D., Picotti, S. & Michelini, A.
    2015. Cross-well seismic and electromagnetic tomography for CO2 detection and monitoring in a saline aquifer. Journal of Petroleum Science and Engineering, 133, 245–257.
    [Google Scholar]
  13. Brocher, T.M.
    2005. Empirical relations between elastic wave speeds and density in the Earth’s crust. Bulletin of the Seismological Society of America, 95, 2081–2092.
    [Google Scholar]
  14. Brown, G. & Paulsen, J.
    2011. Improved marine 4D repeatability using an automated vessel, source and receiver positioning system. First Break, 29, 49–58.
    [Google Scholar]
  15. Brown, S., Hagin, P. & Bussod, G.
    2007. AVO monitoring of CO2 sequestration. SEG Technical Program Expanded Abstracts, 2007, 224–228, http://doi.org/10.1190/1.2792415
    [Google Scholar]
  16. Carcione, J.M.
    2007. Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media, 2nd edition, revised and extended. Handbook of Geophysical Exploration: Seismic Exploration, 38. Elsevier, Amsterdam.
    [Google Scholar]
  17. Carcione, J.M., Helle, H.B. & Pham, N.H.
    2003. White’s model for wave propagation in partially saturated rocks: Comparison with poroelastic numerical experiments. Geophysics, 68, 1389–1398.
    [Google Scholar]
  18. Carcione, J.M., Picotti, S., Gei, D. & Rossi, G.
    2006. Physics and seismic modeling for monitoring CO2 storage. Pure and Applied Geophysics, 163, 175–207.
    [Google Scholar]
  19. Carcione, J.M., Gei, D., Picotti, S. & Michelini, A.
    2012. Crosshole electromagnetic and seismic modeling for CO2 detection and monitoring in a saline aquifer. Journal of Petroleum Science and Engineering, 100, 162–172, http://doi.org/10.1016/j.petrol.2012.03.018
    [Google Scholar]
  20. Castagna, J.P., Batzle, M.L. & Eastwood, R.L.
    1985. Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks. Geophysics, 50, 571–581.
    [Google Scholar]
  21. Castagna, J.P., Batzle, M. & Kan, T.
    1993. Rock physics – The link between rock properties and AVO response. In: Castagna, J.P. & Backus, M. (eds) Offset-Dependent Reflectivity – Theory and Practice of AVO Analysis. Society of Exploration Geophysicists, Tulsa, OK, 135–171, http://www.gbv.de/dms/goettingen/583825389.pdf
    [Google Scholar]
  22. Chadwick, A., Arts, R., Eiken, O., Williamson, P. & Williams, G.
    2006. Geophysical monitoring of the CO2 plume at Sleipner, North Sea: An outline review. In: Lombardi, S., Altunina, L.K. & Beaubien, S.E. (eds) Advances in the Geological Storage of Carbon Dioxide: International Approaches to Reduce Anthropogenic Greenhouse Gas Emissions. NATO Science Series IV: Earth and Environmental Sciences. Springer, Dordrecht, 303–314.
    [Google Scholar]
  23. Chadwick, A., Arts, R., Bernstone, C., May, F., Thibeau, S. & Zweigel, P.
    2008. Best Practice for the Storage of CO2 in Saline Aquifers – Observations and Guidelines from the SACS and CO2STORE Projects, Volume 14. British Geological Survey, Keyworth, Nottingham.
    [Google Scholar]
  24. De Waals, J.A.
    1986. On the Rate Type Compaction Behaviour of Sandstone Reservoir Rock. PhD thesis, Delft University of Technology, The Netherlands.
    [Google Scholar]
  25. Domenico, S.N.
    1974. Effect of water saturation on seismic reflectivity of sand reservoirs encased in shale. Geophysics, 39, 759–769.
    [Google Scholar]
  26. 1976. Effect of brine-gas mixture on velocity in an unconsolidated sand reservoir. Geophysics, 41, 882–894.
    [Google Scholar]
  27. 1977. Elastic properties of unconsolidated porous sand reservoirs. Geophysics, 42, 1339–1368.
    [Google Scholar]
  28. Dortman, N.B.
    (ed.). 1992. Petrophysics. A Handbook. Book 1. Rocks and Minerals. Nedra, Moscow (in Russian).
    [Google Scholar]
  29. Eliasson, P., Romdhane, A., Jordan, M. & Querendez, E.
    2014. A synthetic Sleipner study of CO2 quantification using controlled source electro-magnetics and full waveform inversion. Energy Procedia, 63, 4249–4263, http://doi.org/10.1016/j.egypro.2014.11.460
    [Google Scholar]
  30. Fornel, A. & Estublier, A.
    2013. To a dynamic update of the Sleipner CO2 storage geological model using 4D seismic data. Energy Procedia, 37, 4902–4909, http://doi.org/10.1016/j.egypro.2013.06.401
    [Google Scholar]
  31. Gardner, G.H.F., Gardner, L.W. & Gregory, A.R.
    1974. Formation velocity and density – The diagnostic basics for stratigraphic traps. Geophysics, 39, 770–780.
    [Google Scholar]
  32. Gercek, H.
    2007. Poisson’s ratio values for rocks. International Journal of Rock Mechanics and Mining Sciences, 44, 1–13.
    [Google Scholar]
  33. Gregory, A.R.
    1977. Fluid saturation effects on dynamic elastic properties of sedimentary rocks. Geophysics, 41, 895–921.
    [Google Scholar]
  34. Grigelis, A.
    2011. Research of the bedrock geology of the Central Baltic Sea. Baltica, 24, 1–12.
    [Google Scholar]
  35. Haase, A. & Stewart, R.
    2004. Attenuation estimates from VSP and log data. In: 74th Annual International Meeting, SEG Expanded Abstracts. Society of Exploration Geophysicists, Tulsa, OK, 2497–2500.
    [Google Scholar]
  36. Holloway, S.
    2005. Underground sequestration of carbon dioxide – a viable greenhouse gas mitigation option. Energy, 30, 2318–2333.
    [Google Scholar]
  37. Huppert, H.E. & Woods, A.W.
    1995. Gravity-driven flows in porous layers. Journal of Fluid Mechanics, 292, 55–69.
    [Google Scholar]
  38. IEA
    IEA. 2004. Prospects for CO2 Capture and Storage. IEA (International Energy Agency)/OECD, Paris.
    [Google Scholar]
  39. IEA
    IEA. 2013. CO2 Emissions from Fuel Combustion. Highlights. IEA (International Energy Agency)/OECD, Paris.
    [Google Scholar]
  40. IPCC
    IPCC. 2005. Metz, B., Davidson, O., de Coninck, H.C., Loos, M. & Meyer, L.A. (eds) IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
    [Google Scholar]
  41. IPCC
    IPCC. 2013. Working Group I Contribution to the IPCC Fifth Assessment Report, Climate Change 2013: The Physical Science Basis, Summary for Policy Makers. IPCC (Intergovernmental Panel on Climate Change), Geneva, http://www.climatechange2013.org
    [Google Scholar]
  42. Jain, S.
    1987. Amplitude-vs-offset analysis: A review with references to application in western Canada. Canadian Society of Exploration Geophysicists Journal, 23, 27–36.
    [Google Scholar]
  43. Janssen, A., Byerley, G., Ediriweera, K., Hope, T., Rasmussen, K. & Westeng, K.
    2006. Simulation-driven seismic modeling applied to the design of a reservoir surveillance system for Ekofisk Field. The Leading Edge, 25, 1176–1185.
    [Google Scholar]
  44. Jin, S., Cambois, G. & Vuillermoz, C.
    2000. Shear-wave velocity and density estimation from PS-wave AVO analysis: Application to an OBS dataset from the North Sea. Geophysics, 65, 1446–1454.
    [Google Scholar]
  45. Kazemeini, S.H., Juhlin, C. & Fomel, S.
    2010. Monitoring CO2 response on surface seismic data; a rock physics and seismic modeling feasibility study at the CO2 sequestration site, Ketzin, Germany. Journal of Applied Geophysics, 71, 109–124.
    [Google Scholar]
  46. Kragh, E. & Christie, P.
    2002. Seismic repeatability, normalized RMS, and predictability. Society of Exploration Geophysicists. The Leading Edge, 21, 640–647.
    [Google Scholar]
  47. Lacombe, C.H., Campbell, S. & White, S.
    2011. Improvements in 4D seismic processing – Foinaven 4 years on. Extended Abstract. Paper presented at the 73rd EAGE Conference & Exhibition incorporating SPE EUROPEC 2011, 23−26 May 2011, Vienna, Austria.
    [Google Scholar]
  48. Ludwig, W.J., Nafe, J.E. & Drake, C.L.
    1970. Seismic refraction. In: Maxwell, A.E. (ed.) The Sea, Volume4. Wiley–Interscience, New York, 53–84.
    [Google Scholar]
  49. Lyle, S., Huppert, H.E., Hallworth, M., Bickle, M. & Chadwick, A.
    2005. Axisymmetric gravity currents in a porous medium. Journal of Fluid Mechanics, 543, 293–302.
    [Google Scholar]
  50. MacBeth, C., Stammeijer, J. & Omerod, M.
    2006. Seismic monitoring of pressure depletion evaluated for a United Kingdom continental-shelf gas reservoir. Geophysical Prospecting, 54, 29–47.
    [Google Scholar]
  51. National Research Council
    National Research Council. 2010. Ocean Acidification: A National Strategy to Meet the Challenges of a Changing Ocean. The National Academies Press, Washington, DC.
    [Google Scholar]
  52. Pawar, R.J., Warpinski, N.R. et al.
    2006. Overview of a CO2 sequestration field test in the West Pearl Queen reservoir, New Mexico. Environmental Geosciences, 13, 163–180.
    [Google Scholar]
  53. Peng, D.Y. & Robinson, D.B.
    1976. A new two-constant equation of state. Industrial & Engineering Chemistry Fundamentals, 15, 59–64.
    [Google Scholar]
  54. Picotti, S., Carcione, J.M., Gei, D., Rossi, G. & Santos, J.E.
    2012. Seismic modeling to monitor CO2 geological storage: The Atzbach-Schwanenstadt gas field. Journal of Geophysical Research, 117, B06103, http://doi.org/10.1029/2011JB008540
    [Google Scholar]
  55. Rossi, G., Gei, D., Picotti, S. & Carcione, J.M.
    2008. CO2 storage at the Aztbach-Schwanenstadt gas field: A seismic monitoring feasibility study. First Break, 26, 45–51.
    [Google Scholar]
  56. Saxena, V.
    2004. Role of associated minerals and porosity in VP–VS response for sandstone and limestone. Paper presented at the International Symposium of the Society of Core Analysts, Abu Dhabi, UAE, 5–9 October 2004, SCA2004–46, 1–7, http://www.ux.uis.no/~s-skj/ipt/Proceedings/SCA.1987-2004/1-SCA2004-46.pdf
    [Google Scholar]
  57. Shogenov, K. & Gei, D.
    2013. Seismic numerical modeling to monitor CO2 storage in the Baltic Sea offshore structure. In: 74th EAGE Conference & Exhibition incorporating SPE EUROPEC 2013, 10–13 June 2013, London, UK. European Association of Geoscientists and Engineers (EAGE), Houten, The Netherlands, 1–4.
    [Google Scholar]
  58. Shogenov, K., Shogenova, A. & Vizika-Kavvadias, O.
    2013a. Petrophysical properties and capacity of prospective structures for geological storage of CO2 onshore and offshore Baltic. Energy Procedia, 37, 5036–5045, http://doi.org/10.1016/j.egypro.2013.06.417
    [Google Scholar]
  59. 2013b. Potential structures for CO2 geological storage in the Baltic Sea: Case study offshore Latvia. Bulletin of the Geological Society of Finland, 85, 65–81.
    [Google Scholar]
  60. Shogenov, K., Shogenova, A., Vizika-Kavvadias, O. & Nauroy, J.F.
    2015a. Experimental modeling of CO2–fluid–rock interaction: The evolution of the composition and properties of host rocks in the Baltic Region. Earth and Space Science, 2, 262–284.
    [Google Scholar]
  61. 2015b. Reservoir quality and petrophysical properties of Cambrian sandstones and their changes during the experimental modelling of CO2 storage in the Baltic Basin. Estonian Journal of Earth Science, 64, 199–217.
    [Google Scholar]
  62. Shogenova, A., Sliaupa, S., Vaher, R., Shogenov, K. & Pomeranceva, R.
    2009a. The Baltic Basin: Structure, properties of reservoir rocks and capacity for geological storage of CO2. Tallinn. Estonian Academy Publishers. Estonian Journal of Earth Sciences, 58, 259–267.
    [Google Scholar]
  63. Shogenova, A., Šliaupa, S. et al.
    2009b. Possibilities for geological storage and mineral trapping of industrial CO2 emissions in the Baltic region. Energy Procedia, 1, 2753–2760.
    [Google Scholar]
  64. Shogenova, A., Kleesment, A., Shogenov, K., Põldvere, A. & Jõeleht, A.
    2010. Composition and properties of Estonian Palaeozoic and Ediacaran sedimentary rocks. In: 72nd EAGE Conference & Exhibition incorporating SPE EUROPEC 2010, 14–17 June 2010, Barcelona, pp 1–5. European Association of Geoscientists and Engineers (EAGE), Houten, The Netherlands.
    [Google Scholar]
  65. Shogenova, A., Shogenov, K. et al.
    2011a. CO2 geological storage capacity analysis in Estonia and neighboring regions. Energy Procedia, 4, 2785–2792.
    [Google Scholar]
  66. Shogenova, A., Shogenov, K., Pomeranceva, R., Nulle, I., Neele, F. & Hendriks, C.
    2011b. Economic modelling of the capture–transport–sink scenario of industrial CO2 emissions: The Estonian–Latvian cross-border case study. Energy Procedia, 4, 2385–2392.
    [Google Scholar]
  67. Sliaupa, S., Shogenova, A., Shogenov, K., Sliaupiene, R., Zabele, A. & Vaher, R.
    2008. Industrial carbon dioxide emissions and potential geological sinks in the Baltic States. Oil Shale, 25, 465–484.
    [Google Scholar]
  68. Šliaupa, S., Lojka, R. et al.
    2013. CO2 storage potential of sedimentary basins of Slovakia, the Czech Republic, Poland, and Baltic States. Geological Quarterly, 57, 219–232.
    [Google Scholar]
  69. Vedanti, N., Pathak, A., Srivastava, R.P. & Dimri, V.P.
    2009. Time lapse (4D) seismic: Some case studies. e-Journal Earth Science India, 4, 230–248, http://www.earthscienceindia.info/pdfupload/download.php?file=tech_pdf-1292.pdf
    [Google Scholar]
  70. Vera, C.V.
    2012. Seismic modelling of CO2 in a sandstone aquifer. MSc thesis, University of Calgary, Alberta, http://hdl.handle.net/1880/48934
    [Google Scholar]
  71. Udias, A.
    1999. Principles of Seismology. Cambridge University Press, Cambridge.
    [Google Scholar]
  72. USEPA
    USEPA. 2013. Causes of Climate Change. United States Environmental Protection Agency, Washington, DC, http://www.epa.gov/climatechange/science/causes.html last accessed February 22, 2013
    [Google Scholar]
  73. United States Geological Survey Geologic Carbon Dioxide Storage Resources Assessment Team
    United States Geological Survey Geologic Carbon Dioxide Storage Resources Assessment Team. 2013. National Assessment of Geologic Carbon Dioxide Storage Resources. Results. United States Geological Survey Circular, 1386, 41, http://pubs.usgs.gov/circ/1386
    [Google Scholar]
  74. Waters, K.
    1978. Reflection Seismology. A Tool for Energy Resource Exploration. Wiley, New York.
    [Google Scholar]
  75. White, J.E.
    1965. Seismic Waves: Radiation, Transmission and Attenuation. McGraw-Hill, New York.
    [Google Scholar]
  76. 1975. Computed seismic speeds and attenuation in rocks with partial gas saturation. Geophysics, 40, 224–232.
    [Google Scholar]
  77. Zhang, Z. & Agarwal, R.
    2014. Numerical simulation and optimization of Sleipner carbon sequestration project. International Journal of Engineering & Technology, 3, 1–13, http://doi.org/10.14419/ijet.v3i1.1439
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2015-017
Loading
/content/journals/10.1144/petgeo2015-017
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error