1887
Volume 22, Issue 4
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

The NW Mediterranean Basin developed during the Oligocene–Miocene rifting of the Eastern Iberian–European magma-poor continental margin. The margin developed as a result of back-arc extension associated with the rollback of the retreating Calabrian–Tethys subduction zone. Reinterpretation of 2D regional seismic reflection data suggests that rifting took place by hyperextension of the Iberian–European lithosphere. This process led to the seawards arrangement of distinct crustal domains: namely, proximal, necking and distal. The late post-rift Messinian salinity crisis (MSC) gave rise to significant margin erosion and canyon incision, the lowstand sedimentary by-products of which were largely deposited prior to the Messinian evaporitic sequences. Mesozoic–Cenozoic and Messinian–Recent salt tectonics events have been recognized. A regional hydrocarbon play concept is proposed here for shelf–deep-water settings, including pre-salt, Messinian and post-salt plays.

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2015-084
2016-08-31
2024-04-27
Loading full text...

Full text loading...

References

  1. Alves, T.M., Gawthorpe, R.L., Hunt, D.H. & Monteiro, J.H.
    2003. Post-Jurassic tectono-sedimentary evolution of the Northern Lusitanian Basin (Western Iberian margin). Basin Research, 15, 227–249.
    [Google Scholar]
  2. Ayala, C., Pous, J. & Torne, M.
    1996. The lithosphere-asthenosphere boundary of the Valencia Trough (western Mediterranean) deduced from 2D geoid and gravity modelling. Geopshysical Research Letters, 23, 3131–3134, http://doi.org/10.1029/96GL03005
    [Google Scholar]
  3. Ayala, C., Torne, M. & Roca, R.
    2015. A review of the current knowledge of the crustal and lithospheric structure of the Valencia Trough Basin. Boletín Geológico y Minero, 126, 533–552.
    [Google Scholar]
  4. Bache, F., Olivet, J.L., Gorini, C., Rabineau, M., Baztan, J., Aslanian, D. & Suc, J.-P.
    2009. Messinian erosional and salinity crises: View from the Provence Basin (Gulf of Lions, Western Mediterranean). Earth and Planetary Science Letters, 286, 139–157, http://doi.org/10.1016/j.epsl.2009.06.021
    [Google Scholar]
  5. Bache, F., Olivet, J.L., Gorini, C., Aslanian, D., Labails, C. & Rabineau, M.
    2010. Evolution of rifted continental margins: the case of the Gulf of Lions (Western Mediterranean Basin). Earth and Planetary Science Letters, 3–4, 345–356.
    [Google Scholar]
  6. Bache, F., Popescu, S.-M. et al.
    2012. A two-step process for the reflooding of the Mediterranean after the Messinian Salinity Crisis. Basin Research, 24, 125–153, http://doi.org/10.1111/j.1365-2117.2011.00521.x
    [Google Scholar]
  7. Bache, F., Gargani, J. et al.
    2015. Messinian evaporite deposition during sea level rise in the Gulf of Lions (Western Mediterranean). Marine and Petroleum Geology, 66, 262–277.
    [Google Scholar]
  8. Bertoni, C. & Cartwright, J.
    2005. 3D seismic analysis of slope-confined canyons from the Plio-Pleistocene of the Ebro Continental Margin (Western Mediterranean). Basin Research, 17, 43–62, http://doi.org/10.1111/j.1365-2117.2005.00254.x
    [Google Scholar]
  9. Briand, F.
    (ed.). 2008. The Messinian Salinity Crisis from Mega-deposits to Microbiology – A Consensus Report: CIESM Workshop Monographs, Volume 33. CIESM, Monaco.
    [Google Scholar]
  10. Brun, J.P. & Beslier, M.O.
    1996. Mantle exhumation at passive margin. Earth and Planetary Science Letters, 142, 161–173.
    [Google Scholar]
  11. Brun, J.P. & Fort, X.
    2011. Salt tectonics at passive margins: Geology versus models. Marine and Petroleum Geology, 28, 1123–1145.
    [Google Scholar]
  12. 2012. Salt tectonics at passive margins: Geology versus models – Replay. Marine and Petroleum Geology, 37, 195–208.
    [Google Scholar]
  13. Cameselle, A.L. & Urgeles, R.
    2016. Large-scale margin collapse during Messinian early sea-level drawdown: the SW Valencia trough, NW Mediterranean. Basin Research, http://doi.org/10.1111/bre.12170
    [Google Scholar]
  14. Cameselle, A.L., Urgeles, R., De Mol, B., Camerlenghi, A. & Canning, J.C.
    2014. Late Miocene sedimentary architecture of the Ebro Continental Margin (Western Mediterranean): implications to the Messinian Salinity Crisis. International Journal of Earth Sciences, 103, 423–440, http://doi.org/10.1007/s00531-013-0966-5
    [Google Scholar]
  15. Cavazza, W., Roure, F., Spakman, W., Stamplfli, G.M. & Ziegler, P.A.
    (eds). 2004. The TRANSMED Atlas – The Mediterranean Region from Crust to Mantle . Springer, Berlin.
    [Google Scholar]
  16. Cita, M.B.
    1973. Mediterranean evaporite: palaeontological arguments for a deep-basin desiccation model. In: Drooger, C.W. (ed.) Messininan Events in the Mediterranean. North-Holland, Amsterdam, 206–228.
    [Google Scholar]
  17. Clauzon, G., Suc, J.P., Gautier, F., Berger, A. & Loutre, M.F.
    1996. Alternate interpretation of the Messinian salinity crisis: controversy resolved?Geology, 24, 363–366.
    [Google Scholar]
  18. Clavell, E. & Berastegui, X.
    1991. Petroleum geology of the Gulf of Valencia. In: Spencer, A.M. (ed.) Generation, Accumulation and Production of EUROPE'S Hydrocarbons. European Association of Petroleum Geoscientists, Special Publications, 1. Oxford University Press, Oxford,335368.
    [Google Scholar]
  19. Doglioni, C., Gueguen, E., Sàbat, F. & Fernández, M.
    1997. The Western Mediterranean extensional basins and the Alpine Orogen. Terra Nova, 9, 109–112.
    [Google Scholar]
  20. Dos Reis, A.T., Gorini, C., Weibull, W., Perovano, R., Mepen, M. & Ferreira, E.
    2008. Radial gravitational gliding indicated by sub-salt relief and salt-related structures: the example of the Gulf of Lions, western Mediterranean. Revista Brasileira de Geofísica, 26, 347–365.
    [Google Scholar]
  21. Etheve, N., Frizon de Lamotte, D., Mohn, G., Martos, R., Roca, E. & Blanpied, C.
    2016. Extensional vs. contractional Cenozoic deformation in Ibiza (Balearic Promontory, Spain): Integration in the West Mediterranean back-arc setting. Tectonophysics, 682, 35–55.
    [Google Scholar]
  22. Evans, G. & Arche, A.
    2002. The flux of siliciclastic sediment from the Iberian Peninsula, with particular reference to the Ebro. In: Jones, S.J. & Frostick, L.E. (eds) Sediment Flux to Basins: Causes, Controls and Consequences. Geological Society, London, Special Publications, 191, 199–208, http://doi.org/10.1144/GSL.SP.2002.191.01.14
    [Google Scholar]
  23. Ferrer, O., Roca, E., Benjumea, B., Muñoz, J.A., Ellouz, N.
    & MARCONI Team . 2008. The deep seismic reflection MARCONI-3 profile: role of extensional Mesozoic structure during the Pyrenean contractional deformation at the Eastern part of the Bay of Biscay. Marine and Petroleum Geology, 25, 714–730.
    [Google Scholar]
  24. Flecker, R., Krijgsman, W. et al.
    2015. Evolution of the Late Miocene Mediterranean-Atlantic gateways and their impact on regional and global environmental change. Earth-Science Reviews, 150, 365–392.
    [Google Scholar]
  25. Foucher, J.E., Mauffret, A. et al.
    1992. Heat flow in the Valencia trough: geodynamic implications. Tectonphysics, 203, 77–97.
    [Google Scholar]
  26. García, M., Maillard, A., Aslanian, D., Rabineau, M., Alonso, B., Gorini, C. & Estrada, F.
    2011. The Catalan margin during the Messinian Salinity Crisis: Physiography, morphology and sedimentary record. Marine Geology, 284, 158–174, http://doi.org/10.1016/j.margeo.2011.03.017
    [Google Scholar]
  27. García-Castellanos, D., Estrada, F., Jiménez-Munt, I., Gorini, C., Fernàndez, M., Vergés, J. & De Vicente, R.
    2009. Catastrophic flood of the Mediterranean after the Messinian salinity crisis. Nature, 462, 778–781.
    [Google Scholar]
  28. Gorini, C., Le Marrec, A. & Mauffret, A.
    1993. Contribution to the structural and sedimentary history of the Gulf of Lions (western Mediterranean), from the ECORS profiles, industrial seismic profiles and well data. Bulletin Société Géologique de France, 164, 353–363.
    [Google Scholar]
  29. Gorini, C., Montadert, L. & Rabineau, M.
    2015. New imaging of the salinity crisis: Dual Messinian lowstand megasequences recorded in the deep basin of both the eastern and western Mediterranean. Marine and Petroleum Geology, 66, 278–294.
    [Google Scholar]
  30. Govers, R., Meijer, P. & Krijgsman, W.
    2009. Regional isostatic response to Messinian Salinity Crisis events. Tectonophysics, 463, 109–129.
    [Google Scholar]
  31. Granado, P., Sàbat, F., Muñoz, J.A., Mazzuca, N., Griffi, G. & Gambini, R.
    2015. Traditional and new potential hydrocarbon plays in the NW Mediterranean. Paper presented at the session on Exploring the Mediterranean – New Concepts Related to the Messinian Salt at the 77th EAGE Conference and Exhibition 2015 , IFEMA, Madrid, Spain, 1–4 June 2015, http://doi.org/10.3997/2214-4609.201413563
  32. Gueguen, E., Doglioni, C. & Fernandez, M.
    1998. On the post-25 Ma geodynamic evolution of the western Mediterranean. Tectonophysics, 298, 259–269.
    [Google Scholar]
  33. Guennoc, P., Gorini, C. & Mauffret, A.
    2000. Histoire géologique du Golfe du Lion et cartographie du rift oligo-aquitanien et de la surface messinienne. Géologie de la France, 3, 67–97.
    [Google Scholar]
  34. Haq, B.U., Hardenbol, J. & Vail, P.R.
    1987. Chronology of fluctuating sea levels since the Triassic (250 million years ago to present). Science, 235, 1156–1166.
    [Google Scholar]
  35. Hsü, K.J., Ryan, W.B.F. & Cita, M.B.
    1973. Late Miocene dessication of the Mediterranean. Nature, 242, 240–244.
    [Google Scholar]
  36. Jolivet, L., Gorini, C., Smit, J. & Leroy, S.
    2015. Continental breakup and the dynamics of rifting in back-arc basins: the Gulf of Lion margin. Tectonics, 34, 662–679, http://doi.org/10.1002/2014TC003570
    [Google Scholar]
  37. Kertznus, V. & Kneller, B.
    2009. Clinoform quantification for assessing the effects of external forcing on continental margin development. Basin Research, 21, 738–758, http://doi.org/10.1111/j.1365-2117.2009.00411.x
    [Google Scholar]
  38. Krijgsman, W., Hilgen, F.J., Raffi, I., Sierro, F.J. & Wilson, D.S.
    1999. Chronology, causes and progression of the Messinian salinity crisis. Nature, 400, 653–655.
    [Google Scholar]
  39. Lanaja, J.M.
    1987. Contribución de la Exploración Petrolífera al Conocimiento de la Geología de España. Instituto Geológico y Minero de España (IGME), Madrid.
    [Google Scholar]
  40. Lavier, L.L. & Manatschal, G.
    2006. A mechanism to thin the continental lithosphere at magma-poor margins. Nature, 440, 324–328.
    [Google Scholar]
  41. Lofi, J., Rabineau, M. et al.
    2003. Plio–Quaternary prograding clinoform wedges of the western Gulf of Lion continental margin (NW Mediterranean) after the Messinian Salinity Crisis. Marine Geology, 198, 289–317, http://doi.org/10.1016/S0025-3227(03)00120-8
    [Google Scholar]
  42. Lofi, J., Gorini, C., Berné, S., Clauzon, G., Dos Reis, A.T., Ryan, W.B.F. & Steckler, M.S.
    2005. Erosional processes and paleo-environmental changes in the Western Gulf of Lions (SW France) during the Messinian Salinity Crisis. Marine Geology, 217, 1–30, http://doi.org/10.1016/j.margeo.2005.02.014
    [Google Scholar]
  43. Lofi, J., Deverchère, J. et al.
    2011a. Seismic atlas of the “Messinian Salinity Crisis” markers in the Mediterranean and Black Seas. Commission for the Geological Map of the World (CGMW), Mémoires de la Société Géologique de France, 179, 72.
    [Google Scholar]
  44. Lofi, J., Sage, F. et al.
    2011b. Refining our knowledge of the Messinian Salinity Crisis records in the offshore domain through multi-site seismic arrays. Bulletin Société Géologique de France, 182, 163–180.
    [Google Scholar]
  45. Lonergan, L. & White, N.
    1997. Origin of the Betic-Rif mountain belt. Tectonics, 16, 504–522, http://doi.org/10.1029/96TC03937
    [Google Scholar]
  46. Lopes, F.C., Cunha, P.P. & Le Gall, B.
    2006. Cenozoic seismic stratigraphy and tectonic evolution of the Algarve margin (offshore Portugal, southwestern Iberian Peninsula). Marine Geology, 231, 1–36.
    [Google Scholar]
  47. Maillard, A., Mauffret, A., Watts, A.B., Torné, M., Pascal, G., Buhl, P. & Pinet, B.
    1992. Tertiary sedimentary history and structure of the Valencia trough (western Mediterranean). Tectonophysics, 203, 57–75.
    [Google Scholar]
  48. Martí, J., Mitjavila, J., Roca, E. & Aparicio, A.
    1992. Cenozoic magmatism of the Valencia trough (western Mediterranean): relationship between structural evolution and volcanism. Tectonophysics, 203, 145–165.
    [Google Scholar]
  49. Martínez del Olmo, W.
    1996. Secuencias de depósito y estructuración diapírica en el Mesozoico y Neógeno del Prebético y Golfo de Valencia desde sondeos y líneas sísmicas. PhD thesis, Universidad Complutense de Madrid.
    [Google Scholar]
  50. Mencos, J., Carrera, N. & Muñoz, J.A.
    2015. Influence of rift basin geometry on the subsequent post-rift sedimentation and basin inversion: the Organyà basin and the Bóixols thrust sheet (South-Central Pyrenees). Tectonics, 34, 1452–1474, http://doi.org/10.1002/2014TC003692
    [Google Scholar]
  51. Montadert, L., Letouzey, J. & Mauffert, A.
    1978. Messinian event: seismic evidence. In: Hsü, K.J., Montardert, L. et al. Report of the DSDP, Volume XLII, Part I. United States Government Printing Office, Washington, DC, 1037–1050.
    [Google Scholar]
  52. Moulin, M., Klingelhoefer, F., Afilhado, A., Schnurle, P., Rabineau, M., Berlier, M.O. & Feld, A.
    2015. Deep crustal structure across a young passive margin from wide-angle and reflection seismic data (The SARDINIA Experiment) – I. Gulf of Lion's margin. Bulletin Société Géologique de France, 186, 309–330.
    [Google Scholar]
  53. Nelson, C.H. & Maldonado, A.
    1990. Factors controlling late Cenozoic continental margin growth from the Ebro Delta to the western Mediterranean deep sea. Marine Geology, 95, 419–440, http://doi.org/10.1016/0025-3227(90)90127-6
    [Google Scholar]
  54. Pascal, G.P., Torne, M., Muhl, P., Watts, A.B. & Maufrett, A.
    1992. Crustal and velocity structure of the Valencia trough (Western Mediterranean). Part II. Detailed interpretation of five Expanded Spread Profiles. Tectonophysics, 203, 21–35.
    [Google Scholar]
  55. Pascal, G.P., Mauffret, A. & Patriat, P.
    1993. The ocean–continent boundary in the Gulf of Lions from analysis of expanding spread profiles and gravity modelling. Geophysical Journal International, 113, 701–726.
    [Google Scholar]
  56. Pasquale, V., Verdoya, M. & Chiozzi, P.
    1994. Types of crust in the Ligurian Sea. Terra Nova, 6, 255–266.
    [Google Scholar]
  57. Peel, F.J.
    2014. The engines of gravity-driven movement on passive margins: Quantifying the relative contribution of spreading vs. gravity gliding mechanisms. Tectonophysics, 633, 126–142.
    [Google Scholar]
  58. Péron-Pinvidic, G. & Manatschal, G.
    2010. From microcontinents to extensional allochthons: witnesses of how continents break apart?Petroleum Geoscience, 16, 189–197, http://doi.org/10.1144/1354-079309-903
    [Google Scholar]
  59. Péron-Pinvidic, G., Manatschal, G. & Osmundsen, P.T.
    2013. Structural comparison of archetypal Atlantic rifted margins: A review of observations and concepts. Marine and Petroleum Geology, 43, 21–47.
    [Google Scholar]
  60. Posamentier, H.W. & Allen, G.P.
    1999. Siliciclastic Sequence Stratigraphy: Concepts and Applications. Society of Economic Paleontologists and Mineralogists (SEPM), Concepts in Sedimentology and Palentology, 7.
    [Google Scholar]
  61. Posamentier, H.W., Jervey, M.T. & Vail, P.R.
    1988. Eustatic controls on clastic deposition I – conceptual framework. In: Wilgus, C.K., Hastings, B.S., Kendall, C.G.St.C., Posamentier, H.W., Ross, C.A. & Van Wagoner, J.C. (eds) Sea Level Changes – An integrated Approach. Society of Economic Paleontologists and Mineralogists (SEPM), Special Publications, 42, 110–124.
    [Google Scholar]
  62. Rabineau, M., Leroux, E. et al.
    2014. Quantifying subsidence and isostatic readjustment using sedimentary paleomarkers, example from the Gulf of Lion. Earth and Planetary Science Letters, 388, 353–366.
    [Google Scholar]
  63. Réhault, J.P., Mascle, J. & Boillot, G.
    1984. Evolution géodynamique de la Méditerranée depuis l’Òligocène. Memorie della Società Geologica Italiana, 27, 85–96.
    [Google Scholar]
  64. Roca, E.
    2001. The Northwestern Mediterranean Basin (Valencia Trough, Gulf of Lions and Liguro-Provençal basins): structure and geodynamic evolution. In: Ziegler, P.A., Cavazza, W., Robertson, A.H.F. & Crasquin-Soleau, S. (eds) Peri-Tethys Memoir 6: Peri-Tethyan Rift/Wrench Basins and Passive Margins. Mémories du Museum National d'Histoire Naturelle, Paris, 186, 671–706.
    [Google Scholar]
  65. Roca, E., Sans, M. & Cabrera, L.
    1999. Modelo tectonosedimentario del sector central y septentrional del Margen Catalán sumergido (cubetas de Barcelona, Sant Feliu, Begur, y Riumors-Rosas). In: Libro Homenaje a José Ramírez del Pozo. AGGEP, Madrid, 199–217.
    [Google Scholar]
  66. Roca, E., Frizon de Lamotte, D. et al.
    2004. TRANSMED Transect II. In: Cavazza, W., Roure, F., Spakman, W., Stampfli, G.M. & Ziegler, P. (eds) The TRANSMED Atlas – The Mediterranean Region from Crust to Mantle. Springer, Berlin, 71–77.
    [Google Scholar]
  67. Roca, E., Muñoz, J.A., Ferrer, O. & Ellouz, N.
    2011. The role of the Bay of Biscay extensional structure in the configuration of the Pyrenean Orogen: constraints from the MARCONI deep seismic reflection survey. Tectonics, TC2001, 30, http://doi.org/10.1029/2010TC002735
    [Google Scholar]
  68. Rouchy, J.M. & Caruso, A.
    2006. The Messinian salinity crisis in the Mediterranean Basin: A reassessment of the data and an integrated scenario. Sedimentary Geology, 188–189, 35–67.
    [Google Scholar]
  69. Roveri, M., Flecker, R. et al.
    2014a. The Messinian Salinity Crisis: past and future of a great challenge for marine sciences. Marine Geology, 352, 25–58.
    [Google Scholar]
  70. Roveri, M., Manzi, V., Bergamasco, A., Falcieri, F.M., Gennari, R., Lugli, S. & Schreiber, B.C.
    2014b. Dense shelf water cascading and Messinian Canyons: a new scenario for the Mediterranean salinity crisis. American Journal of Science, 314, 751–784.
    [Google Scholar]
  71. Rowan, M.G., Peel, F.J. & Vendeville, B.C.
    2004. Gravity-driven fold belts on passive margins. In: McClay, K.R. (ed.) Thrust Tectonics and Hydrocarbon Systems. American Association of Petroleum Geologists, Memoirs, 82, 157–182.
    [Google Scholar]
  72. Rowan, M., Peel, F.J., Vendeville, B.C. & Gaullier, V.
    2012. Salt tectonics at passive margins: Geology versus models – Discussion. Marine and Petroleum Geology, 37, 184–194.
    [Google Scholar]
  73. Ryan, W.B.
    2009. Decoding the Mediterranean Salinity Crisis. Sedimentology, 56, 95–136.
    [Google Scholar]
  74. 2011. Geodynamic responses to a two-step model of the Messinian salinity crisis. Bulletin de la Société Géologique de France, 182, 73–78.
    [Google Scholar]
  75. Sàbat, F., Muñoz, J.A. et al.
    1997. Role of extensión and compression in the evolution of the eastern margin of Iberia: the ESCI-València trough seismic profile. Revista Sociedad Geológica de España, 8, 431–448.
    [Google Scholar]
  76. Salas, R., Guimerà, J., Mas, R., Martín-Closas, C., Meléndez, A. & Alonso, A.
    2001. Evolution of the Mesozoic Central Iberian System and its Cenozoic inversion (Iberian Chain). In: Ziegler, P.A., Cavazza, W., Robertson, A.H.F. & Crasquin-Soleau, S. (eds) Peri-Tethys Memoir 6: Peri-Tethyan Rift/Wrench Basins and Passive Margins. Mémories du Museum National d'Histoire Naturelle, Paris, 186, 145–185.
    [Google Scholar]
  77. Sans, M. & Sàbat, F.
    1993. Pliocene salt rollers and syn-kinematic sediments in the northeast sector of the Valencia Trough (western Mediterranean). Bulletin Société Géologique de France, 164, 189–198.
    [Google Scholar]
  78. Schettino, A. & Turco, E.
    2010. Tectonic history of the western Tethys since the Late Triassic. GSA Bulletin, 123, 89–105.
    [Google Scholar]
  79. Séranne, M.
    1999. The Gulf of Lion continental margin (NW Mediterranean) revisited by IBS: an overview. In: Durand, B., Jolivet, L., Horvath, F., Seranne, M. (eds) The Mediterranean Basins: Tertiary Extension within the Alpine Orogen. Geological Society, London, Special Publications, 156, 15–36, http://doi.org/10.1144/GSL.SP.1999.156.01.03
    [Google Scholar]
  80. Séranne, M., Benedicto, A., Labaume, P., Truffert, C. & Pascal, G.
    1995. Structural style and evolution of the Gulf of Lions Oligo-Miocene rifting: role of the Pyrenean orogeny. Marine and Petroleum Geology, 12, 809–820.
    [Google Scholar]
  81. Urgeles, R., Camerlenghi, A. et al.
    2011. New constraints on the Messinian sealevel drawdown from 3D seismic data of the Ebro Margin, western Mediterranean. Basin Research, 12, 123–145.
    [Google Scholar]
  82. Varela, J., Vicente-Bravo, J.C., Navarro, J., Esteban, M. & Martínez del Olmo, W.
    2005. The oil fields in the Spanish Mediterranean Sea. In: Martínez del Olmo, W. (ed.) Asociación de Geólogos y Geofísicos Españoles del Petróleo (AGGEP) – XXV Aniversario. AGGEP, Madrid, 121–129.
    [Google Scholar]
  83. Warren, J.K.
    2016. Evaporites: A Geological Compendium. 2nd edn. Springer International Publishing, Cham, Switzerland.
    [Google Scholar]
  84. Whitmarsh, R.B., Manatschal, G. & Minshull, T.A.
    2001. Evolution of magma-poor continental margins from rifting to seafloor spreading. Nature, 413, 150–154, http://doi.org/10.1038/35093085
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2015-084
Loading
/content/journals/10.1144/petgeo2015-084
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error