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INTRODUCTION
Two-dimensional (2D) electrical imaging surveys (Griffiths and Barker 1993) are now

widely used to map areas with moderately complex geology where conventional resistivity
sounding surveys do not give sufficiently accurate results. In more complex areas three-
dimensional (3D) surveys (Ellis and Oldenburg 1994, Loke and Barker 1 996b), which gives
even more accurate results but at a greater cost, have also been used.

The smoothness-constrained Gauss-Newton least-squares method has been successfully
used for 2D and 3D inversion of apparent resistivity data (deGroot-Hedlin and Constable
1990, Sasaki 1994). One disadvantage of this technique is the large computing time required
for the calculation of the partial derivatives and to solve the least-squares equation. Loke and
Barker (1 996a,b) used a quasi-Newton method to estimate the partial derivatives to reduce the
computing time. However, since the Gauss-Newton method uses the exact partial denvatives,
it should produce more accurate resuits. In this paper, a method which combines the accuracy
of the Gauss-Newton method with the speed of the quasi-Newton method is examined.

THE LEAST-SQUARES METHOD
The least-squares formulation used in this research, which constrains the smoothness of

the model parameters to a constant value, is given by the following equation.

(JJ+2,CT C)p 1 =Jg 1 - 2,CT C1 1 ,	 (1)

where J is the Jacobian matrix of partial derivatives, C is the flatness filter matrix, gj is a
vector which contains the differences between the logarithms of the measured and calculated
apparent resistivity values, ? is the damping factor, p. is the perturbation vector to the model
parameters for the i th iteration, and r 1 is the model parameters vector for the previous
iteration. in the Gauss-Newton least-squares method, the Jacobian matrix is recalculated after
each iteration by the finite-difference or fimte-element method. To reduce the computing time,
Loke and l3arker (1996a,b) used a quasi-Newton updating method to estimate the Jacobian
matrix after each iteration. A homogeneous earth model, for which the Jacobian rnatrix values
can be calculated analytically, is used as the starting model. After each iteration, the Jacobian
matrix is estimated by using the following updating equation

B^1 = B 1 + u p,	 (2)
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where	 = (Ay - B1 Pi ) Ipp	 =	 -

and B11 is the estimated Jacobian matrix for the (i+ I)th iteration, y1 is the model response and

Ay1 is the change in the model response for the ith iteration (Broyden 1965). The time taken to
solve the least-squares equation (1) is also reduced by using a similar updating method. The
convergence rate of the quasi-Newton method is slower than the Gauss-Newton method but
the time taken per iteration can be much less. In areas with subsurface resistivity contrasts of
less than 10, there were no significant differences in the resuits obtained by the two methods
while the computer time taken by the quasi-Newton method can be an order of magnitude
smaller (Loke and Barker 1996a). In this paper, a comparison of the results obtained with both
methods for cases with a much larger resistivity contrast is made.

RESULTS
Figure 1 shows a test model consisting of a rectangular prism with a resistivity of 500

ohm.m embedded in a medium with a resistivity of 10 ohm.m. The apparent resistivity values
measured with a multi-electro de system wlth 51 electrodes using the Wenner array are
calculated using a finite-difference program. All the possible 408 apparent resistivity values for
electrode spacings of 1 to 16 metres is used as the input data set (Figure 2a). Gaussian random
noise of 1% was added to the apparent resistivity values.

The inversion model which consists of 400 rectangular blocks is also shown in Figure
1. Figure 2 shows the models obtained with the Gauss-Newton and quasi-Newton methods.
The change in the RMS error with iteration number for the Gauss-Newton and quasi-Newton
inversion methods are shown in Figure 3. The starting homogeneous earth model gives an
apparent resistivity RMS error of 56.5 % which is progressively reduced after each iteration.
The largest reductions in the RMS error occur in the first few iterations. From the 3rd iteration
onwards, the RMS error achieved by the Gauss-Newton method is significantly lower than that
obtained with the quasi-Newton method. The Gauss-Newton method converges in 6 iterations
with an RMS error of about 1.2%. In comparison, the RMS error for the quasi-Newton
method at the 6th iteration is about 2.8%, after which It slowly decreases to an asymptotic
value of about 1.5% after 9 iterations.

Figure 4 shows the change in the resistivity value of a selected model block (shaded in
Figure 1) with iteration number. The change in the partial derivative value for one of the
apparent resistivity values is also shown. The block resistivity and the partial derivative values
show the largest changes in the first 2 or 3 iterations. Figure 3 also shows the change in the
RMS error when partial derivatives are recalculated by the finite-difference subroutine for the
1 St iteration only, after which it is estimated by the quasi-Newton method. The error curve for
this hybrid method lies in between the error curves for the Gauss-Newton and quasi-Newton
methods (Figure 3). The convergence rate is further improved by recalculating the partial
derivatives for the first 2 iterations. When the partial derivatives are recalculated for the first 3
iterations, there is no significant difference with the resuits obtained with the Gauss-Newton
method. Since the largest changes ôccur in the first 2 or 3 iterations, the error in the partial
derivative values estimated by the quasi-Newton method in the later iterations has a smaller
effect on the resuits. Similar resuits were obtained for other 2D test models and field data sets,
as well as in the 3D inversion of synthetic and field data sets.
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CONCLUSIONS
Recalculating the partial derivatives for the first 2 or 3 iterations represents a good

compromise between reducing the computing time and obtaining sufficiently accurate resuits.
The computer time is reduced by about half, which is particularly important in 3D resistivity
inversion which can involve more than 10000 datum and very large finite-difference grids.
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Figurel. Schematic diagram of the rectangular
prism test model together with the arrangement
of the blocks used by the inversion program.
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Figure 3. The change of the apparent
resistivity RÎvIS error with iteration
number for the different inversion
methods.
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Figure 2.
(a) Measured apparent
resistivity pseudosection
(b) Mode' obtained with
Gauss-Newton method.
(c) Model obtained with
quasi-Newton method.
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Figure 4. The change in the resistivity
value of the shaded block in Figure 1 with
iteration number. The partial derivative
value is for the measurement made with
the four electrodes marked in Figure 1.
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