
Parallel Reservoir Simulation with Nested Factorisation

Richard Burrows

OxJord University Computing Laboratory, Parks Road, OxJord, OXl 3QD, United Kingdom

Dave Ponting

Schlumberger Geoquest, Abingdon Business Park, OX14 lDZ, United Kingdom

Lindsay Wood

Sciencesoft Ltd, Dalziel Business Centre, MLl 1 YE, United Kingdom

Presented at the 5th European Conference on the Mathematics of Oil Recovery, Leoben, Austria 3-6 Sept. 1996

1 Abstract

To obtain worthwhile gains from massively par-
allel computers in the area of reservoir simulation we
require ahigh degree of parallelisation and efficient
treatment of data input and output. We discuss a
domain-based approach in which the reservoir is split
into areally defined domains, each treating its own celis
and wells. A message passing protocol such as PVM
is used as the programming model.

This requires a scalabie parallellinear solver. We
use a nested factorisation solver for each domain with
a black-white ordering in the overall matrix. On each
domain the equations are solved by planes of cells - this

enables latency problems to be overcome as data may
be sent to the neighbouring domain as each plane is

solved but is not required until the sweep is complete.

The solver supports IMPES, adaptive implicit (AlM),
implicit saturation and fully implicit solution methods.
To avoid slowing the simulator for results output each
domain only sends out information as messages to a
master task. This may occupy a parallel machine node

or a separate front end machine. It collects and col-

lates the results whilst the simulation nodes continue

working and can act as an interactive user interface to

the reservoir model. The flexibility in the selection of
domain boundaries enables these to be moved during

the simulation to load balance the processors. A dif-
fusion based method for doing this is described.

An alternative method of using such a master
slave architecture exists - running a number of inde-
pendent simulation realisations simultaneously. We
discuss the advantages of combining these approaches.

2 Introduetion

We discuss the exploitation of parallel processing in
compositional reservoir simulation. This involves a
change to the central linear solution algorithm. The
nested factorisation (Ref. 1) method has proved effec-
tive in solving the linear systems which arise in reser-
voir simulation, which are usually dominated by large
vertical transmissibilities. However, nested factorisa-

tion is a highly recursive algorithm which is not im-
mediately suitable for parallel processing. By using
an areal division of the reservoir into domains and a
black-white ordering of the planes of cells within the
domains it is possible to generalise nested factorisation
to obtain a scalabie parallel algorithm which maintains
the absence of error terms in the vertical direction.

With a parallellinear solver in place, the remain-

ing aspects of parallel decomposition may be consid-
ered. We wish to retain a single version of the code

with a few compact routines to treat the parallel pro-

19

2 Parallel Reservoir Simulation with Nested Factorisation ECMOR V, 1996

cessing mode. Compositional simulation is in some re-
spects better adapted to parallel processing than black
oil simulation, with a more even distribution of com-
puting effort across the elements ofthe algorithm. The
linear solver is generally less dominant, but the pro-
duction system and the well model are more signifi-
cant. We wish to parallelise the entire code includ-
ing well and initialisation operations to obtain efficient
performance on larger parallel systems.

To achieve this the entire simulation code is run
on each processing element, but treating only its own
section of the field. The only requirement for a master
process is to launch the slave simulations, to send the
input data and to collate the output. It is convenient
to use the same program as master and slave, allowing
the code to detect whether it is in master or slave mode
on startup.

With a high degree of parallel decomposition the
treatment of input and output becomes important. To
prevent delays whilst each processor accesses the input
data we read this into the master task and pass it via
the message passing system to the individual proces-
sors. In the same way output results are sent back to
the master from the processors and only assembied in
the master.

This message passing architecture has a simple
generalisation which applies to the engineering prob-
lems encountered in reservoir simulation. In parallel
simulation each slave is sent a copy of the data and
processes a dornain of the field. Alteratively, we may
send different copies of the data and process the whole
field. In most simulation studies the geology of the

rocks and the nature of the fluid properties are not
weil known. aften a number of plausible realisations
of the reservoir exist and all may be run to give an
indication of the uncertainly in the predicted results.
Sensitivity runs mayalso be performed to establish
the effect of different modelling assumptions. This is
a naturally parallel task which may be treated using
the same message-passing approach. A large number
of runs may be defined from a single data description

and submitted to a set of processors in parallel (Ref.

2). Once the runs have finished the results can be
collated and reported. The two approaches may be
combined - this limits the loss of total scalar efficiency
encounted in highly decomposed studies. For example
4 independent realisations might be performed with
each running as a 4 processor parallel task using a to-
tal of 16 processors. This allows the most flexible and
efficient use of the available parallel computing capac-
ity.

3 The Message Passing Programming
Model

Two main methods exist to set up parallel ver-
sion of a simulation code. In a global memory model
we perform parallel operations in a single program
which accesses data over the processors. The com-
piler or a programming language such as HPF Fortran
passes data across the processors as required. In a mes-
sage passing model we start a task on each processor,
and pass information between the processors when it
is needed. These are passed as message packets - a li-
brary of message passing routines is employed for this
purpose. The library used in this project was PVM
(Ref. 3), a widely available set of routines, but called
from interface routines so that extension to other pos-
sibilities is simple.

Highly parallel computers usually employ a dis-
tributed memory, with some attached to each proces-

sor. However, the message passing picture may be also
used on hardware in which all the memory is genuinely
available to all the processors equally.

A distributed memoryarchitecture thus requires
that information be passed between processors as mes-
sages rather than by direct access to memory. In any
computer system we can term the time taken to initi-
ate this data access as latency which is a system de-
pendent quantity. On shared memory systems the la-

tency is usually in the range of 1 - 100 clock cycles,

but on distributed memory systems this can be several

thousand clock cydes. An algorithm can only run effi-

20

ECMOR V,1996 R. Burrows, D. Ponting and 1. Wood 3

ciently on the lat ter if the time spent on computational
work between message exchanges is greater than the
totallatency times associated with this work. This is
equivalent to minimising the number of message pass-
ing operations and to managing the messages so that
no processor is held in a wait state while a fetch op-
eration is done. A primary aim of the linear solver
design is thus to structure the computations so that
useful work is performed while messages already sent.
are delayed by latency and transfer times.

4 Structure of the Simulator

A reservoir simulator solves the equations gov-
erning the flow of hydrocarbon components and water
within oil and gas reservoirs. In black oil mode there
are just two components - stock tank oil and stock
tank gas. In thermal mode there is an additional en-
ergy equation. The main computational sections are:

1. Oil and gas property evaluation from the cell
composition.

2. Evaluation of flow rates between cells.

3. Evaluation ofwell injection and production rates.

4. Assembling the Jacobian matrix for the non-
linear equations.

5. Solving the linear equation system.

To run the simulator in parallel, we split the
reservoir into domains and assign a processor to each
domain. If cells in each domain were completely in-
dependent this would lead to a naturally parallel pro-
gram.

The property calculations are naturally parallel.
Evaluation of the flows requires knowledge of cells on
other domains. We wish to access the required values

without having exception coding. To do this we use
the method of over-dimensioning.

Normally a reservoir simulator only stores so-
lution values for active cells - those with a non-zero
pore volume. Internally all arrays are dimensioned to

Nactive, the number of active cells, and operations in-

volve loops from 1 to Nactive. Active ordering is nor-

mally a rotated natural ordering with inactive cells
compressed out.

In the over-dimensioning method we allow a sep-
arate count of cells as Ntotal, whilst most loop opera-
tions still run from 1 to Nactive. Overdimension cells
in the range Nactive+1 to Ntotal represent neighbour-
ing cells in other domains, and are numbered after
the active cells. A single parallel exchange operation
is performed after the property evaluation step to fi.!l
these over-dimension cells with their active cell values
on neighbouring processors.

Messages

Overdimension eells

Figure 1. Setting up over-dimension cells

Note that in a two dimensional array of domains
an active cell may be copied into more than one neigh-
bouring over-dimension grid cello This causes no prob-
lems as long as the messages go from the active cells
to the over-dimension cells. Operating on an over-
dimension cell and copying th is into an active cell
would cause ordering problems.
The residuals Ra(Xa, Xo) for the flow equations are
constructed for the active cells only - these involve
active and over-dimension cell solution variables Xa

and Xo. We construct the Jacobian blocks:

Aaa = 8Ra/8Xa

Aao = 8Ra/8Xo

With these blocks in place aillinear solver column sum

and back-substitution operations may be performed by

21

ECMOR V, 19964 Parallel Reservoir Simulation with Nested Factorisation

3-direction---------passing solution array values only.

5 The parallel linear solver

The nested factorisation method is a natural starting

point for a parallel algorithm.

We consider the set of linear equations:

Ax=R

where d is a diagonal matrix, and I, u are lower and

upper bands each direction. The elements of A are

sub-matrices with dimension dependent on the number
of implicit variables per cel!. The derivation of these

linear equations is described in appendix l.

The usual nested factorisation preconditioning matrix
IS:

B = (P + 13).(1 + P-1U3)

i is a block diagonal matrix defined by:

i=d-/1i-1Ul

- colsum(l2)T-1u2

- colsum(13)p-1u3

B is used as a preconditioning matrix in a OR-
THOMIN accelerated conjugate gradient linear solu-

tion scheme (Ref. 6). Colsum is an operator which

sums the elements of a matrix in columns.

2-direction

Figure 2. Definition of black and white planes

The parallel solver is a two-colour method. Half the
planes on each domain are black planes and are cho-
sen to form the chessboard pattern shown in Figure 2.
This example has four domains, and only the active
(not overdimension) cells are shown The global order-
ing used in the linear solver numbers the black planes
before the white planes. This results in the matrix
structure shown in figure 3.

81ack planes White planes

Figure 3. Two coloured domain matrix structure

This results in the matrix:

where I;, u;, I~and u~are the interior matrix elements
in the 2 and 3-directions which are intern al to the black

22

ECMOR V,1996 R. Burrows, D. Ponting and L. Wood 5

or the white planes of a domain. The extern al matrix
elements connecting black and white planes are:

Note that both the lower Ie and upper ue bands

have matrix elements corresponding to both positive
and negative directions in both 2 and 3 directions.
When performing elimination operations all four possi-
bilities must be checked. This is a change from normal
nested factorisation in which lower bands only occur
in the negative direction and upper bands only occur
in the positive direction.

The preconditioning is then similar to nested fac-
torisation, except that black-white and white-black
terms in both the 2- and 3-directions are included in
the outer nesting:

B = (P + I~ + le).(l + p-l(u~ + ue))

We can express I as:

I=d-III-IUI

- colsum(I;)T-lu;

- colsumii]" + I~)p-l(ue + u~)

This preconditioning maintains the main feature of

nested factorisation in having no error terms in the
strong inner direction. The inner I-direction is always
chosen as this dominant z-direction in the parallel case.
The computation of I is therefore a two step process
which allows all the black planes to be processed in
parallel followed by all the white planes in parallel.

i. Gamma sweep for black planes

1= d -In-lul

- colsum(I;)T-lu;

- colsum(I~)p-lu~

ii. Gamma sweep for white planes

1= d -lIl-lUl

- colsum(I;)T-lu;

- colsum(Ie + I~)p-l (ue + u~)

The sequence of operations is important here. The
value of C = colsumil" + l~)p-l is built up in an
auxillary array as I is obtained. For each plane the
operations are:

1. Subtract C.(ue + u~) from I for this plane. This
involves C values from previous planes.

H. Obtain I values for this plane.

lll. Construct colsum(Ie + I~) for this plane.
IV. Post-multiply to obtain C = colsum(l" +l~).p-l

for this plane.

The only message passing operation required is to copy
the C vector values on black planes into the over-
dimension cells on the white planes of neighbouring
processors. This can be done as a single operation
between the black and white plane sweeps.

A similar two step process can be applied to both
the forward and backwards sweeps over planes in the
solution of the approximate inverse system.

Ex = (P + 11 + le).(l + p-l(u~ + ue))x = R

This is solved in two stages:

Ex = (P + 11 + r).y = R

(1 + p-l(u~ + ue))x = y

In the forward sweep we have:

23

6 Parallel Reservoir Simulation with Nested Factorisation ECMOR V, 1996

yW = P-l.(RW _ I;.yb + Ie .yW)

After treating the black planes a message passing op-
eration is required to copy y-values on neighbouring
domains into the overdimension cells to allow them to
be 'seen' by the white planes.
In the backward sweep we have:

xb = yb _ p-l(u;xb + uexw)

These are processed in reverse order, with the white
planes first, and treating the planes in decreasing 3-
index. After treating the white planes a message pass-
ing operation is required to copy x-values on neigh-
bouring domains into the overdimension cells to allow
them to be 'seen' by the black planes.

The parallel solver can thus be implemented in
its simplest form with just one message passing op-

eration in the 'Y calculation and two for each OR-
THOMIN iteration. However it is possible to sequence

. the same messages rather differently. Consider the for-
ward sweep of the approximate inverse. A given white
plane can be processed if the required messages have
been r"eceived, so that the appropriate over-dimension
cells have been filled in. These will come from the cor-
responding black planes on neighbouring processors.
If these messages are sent as soon as those planes have
been completed, the messages have the time required
to process the higher 3-index black planes and the
lower 3-index white planes before they are required.
This processing time may be used to overcome the la-
tency delay.

As only the solution values are copied over, and
as all the matrix elements required for the colsum and
back-substitution operations are held on the proces-
sors, several aspects of the simulator are automatically
included in this solver:

1. Non-neighbour connections due to faults.
H. Local grid refinements contained within a sm-

gle domain. Each local grid would be placed on

the processor which contains the section of global
grid in which it lies.

Ul. Matrix elements due to multiply completed wells
contained within a single domain.

The same solver code can be used for the parallel al- "
gorithm as for normal nested factorisation, with two
enhancements:

1. A permutation array is used to define the order"
in which the 3-planes are treated.

H. A marker array is updated as each plane is pro-
cessed. This enables the lower and upper bands
to be located - a direction to a marked plane is
lower on a forward sweep.

To obtain normal nested factorisation the permutation
array is simply set to natural, rather than black-white,
order. Each iteration of the parallel solver involves
slightly less work than in normal nested factorisation
as some 2-direction matrix elements are in the outer
rather than the middle nesting and are swept once

rather than twice per iteration.

Some results from tests of the linear solver are
described in appendix 2.

6 Load Balancing

As the processes are synchronised after the prop-
erty exchange and each linear solver iteration, the

progress of the simulation is defined by the slowest
process. Particularly for compositional simulation the
computing time per cell may vary widely depending on
the phase state. Two phase cells which use a flash cal-
culation will take more time than single phase hydro-
carbon cells. This imbalance may change during the
progress of the simulation. To prevent load imbalance

effects from severely limiting the parallel performance
we use a dynamic load balancing technique.

In parallel reservoir simulation a 3D grid is par-
titioned in the two horizontal directions into rectangu-
lar domains, each controlled by one processor. As the
simulation progresses the workloads of each cell will
change and the partitioning may be no longer suitable.

24

ECMOR V,1996 R. Burrows, D. Ponting and L. Wood 7

It may then be necessary to change the partitioning so
that the work is more evenly distributed.
The diffusion-based scheme for dynamic load balanc-
ing uses the following iterative procedure:

1. Each processor Pi,j determines the total work for
Ui,j for cells in its domain and receives corre-
spon ding values from its neighbours.

11. Each processor determines the desired work dif-
fusion in each of the four cartesian directions (dif-
fusion across the grid outer boundary is zero).
For example, in the positive x direction:

qi,j = 0.5(Ui+l,j - Ui,j)

lil. Each processor determines the local boundary
shift 8Bfj' d = x, y, to achieve the required flow
of work. These shifts are sent to the master pro-
cessor.

IV. The master determines the required partition
shifts as (for a Px by Py processor arrangement):

8Sx = ~ '" 8B7.P c: ',)
Y j=1..Py

v. The shifts are made by storing the current sim-
ulation solution, restarting the simulation with
the new domain partitioning and reloading the
solution. Convergence is reached when 8Sx and
8Sy have integer values of zero.

7 Conclusions

A method has been described of parallelising an exist-
ing reservoir simulation code with minimal changes to
the existing structure. The entire decomposed code
was implemented on the IBM SP2 parallel system.
Typical overall all speed ups were obtained of 4.6 on 6
processors and 10.6 on 16 processors. Typical problem
sizes were 1600 cells with 9 components. The lack of
'ideal' parallel efficiency (a speed up of 6 on 6 proces-
sors etc) is due to three factors:

Residual load balancing errors

11 The additional cast of storing over-dimension cell
values and forming the Jacobian blocks Aao and

Aoa
III The additional linear iterations required by the

parallellinear solver.

A generalisation of the nested factorisation solver al-
lows the algorithm to scale well on parallel processors
whilst maintaining the strengths of the original algo-
rithm. Load balancing is an important issue and may
be treated using a diffusion based dynamic balancing
method.

8 Nomenclature

A
b;'
d
D
f
F
g
tc.,
»:«;
1
Q
R

P~
6.t

u

x
x
y

J acobian matrix
Molar density
Diagonal band of J acabian
Cell depth

Local flow/unit area vector
Flow of fluid through a cell interface
Gravity constant
Relative permeability of phase p
Number of active cells
Lower band of J acobian
Well production rate from a grid block
Residual of non-linear equations
Average density of phase p in cells i and j
Length of time step
Viscosity

Transmissibility from cell i to cell j
Upper band of Jacabian
Mole fraction of component c in phase p
Primary solution
Change in X over a non-Iinear iteration
Secondary solution

Sub- and superscripts

c
p

25

Component index
Phase index

8 Parallel Reservoir Simulation with Nested Factorisation ECMOR V, 1996

9 Acknowledgements

Part of this work was supported by ESPRIT un-

der research contract P9601.

10 References

1. Appleyard, J .R. and Cheshire, I.M., SPE 12264,
Proc. of 7th SPE Symp. on Res. Sim., San
Francisco, 1983.

2. Faidi, S., Ponting, D.K. and Eagling, T, SPE
36005, Proc. Petroleum Computer Conference,

Dallas, June 96.

3. Geist, S. G., Beguelin, A., Dongarra, J. Jiang,
W., Manchek R. and Sunderam V., PVM 3
Uers's Guide and Reference Manual, Oak Ridge
National Laboratory, 1993.

4. Bhogeswara, R. and Killough J .E., SPE 25240,
Proc 12th Symp. on Res. Sim., New Orleans,
1993.

5. Trangenstein, J .A. and Bell, J .B., SPE 13520,

SPE 8th Reservoir Simulation Symposium, Feb
1985.

6 Vinsome, P.K.W., SPE 5729, Proc. SPE-AIME
4th Symp on Num. Sim.,Los Angeles,1976.

7. Yourrg, L.C., SPE 16023, Proc. 9th Symp, on
Res. Sim.,Feb 1987,San Antonio.

8. Kenyon, D.E. and Behie, A., SPE 12278, Proc.
7th Symp. on Res. Sim.,Nov 1983,San Francisco.

11 Appendix 1: The Non-Linear Equa-
tions Defining a Time Step

Suppose the simulation takes a time step from t
to t+~T. The primary solution variables are the pres-
sure and reservoir mol ar densities of each component
and water in each cell:

x = (P, me, mw) C = 1, .. , Ne

The discretised conservation equations may be written
in residual form:

Re; =(Vpme)r+~T - (Vpme)!

+ ~t.(LF:-+i + L Q~) = 0
i w

where Fi-+i is the flow from cell i to i, Q': the well
injection or production rate.
The flow of a component is obtained by summing over
phases:

Mep is the generalised mobility of component c in

phase p, given by xpeKrp(Sp).b;'/J.lp,
One additional equation is required to complete the
set, and this is taken as a volume balance:

where Up are phase volumes per unit reservoir volume.
The phase equilibrium condition which defines the the
phase volumes, saturations and other quantities ap-
pearing above is obtained from the Gibbs energy min-
imum condition :

These are solved with respect to the secondary
variables Y in two phase cells, and total derivatives
with respect to the primary variables obtained. The
methods used follow those of Ref. 5.

The Ne + 2 equations are in residual form, and
can be solved by Newton's method. At each Newton
step we change the solution vector by:

x=-A-1R

where -"1 is the J acobian aR/ aX. This is the linear
equation system discussed in section 5.

26

EclVi:bR V,1996 R. Burrows, D. Ponting and L. Wood 9

The generalised mobility Mep and the capillary pres-
sure Pep may be treated in three ways:

• Implicit case: The mobility and capillary pres-
sure are a function of the solut ion at the end of
the time step:

The resulting dependenee of the flows on all the
unknown solution variables is reflected in the Ja-
cobian A: the band terms coupling the celis are

full Ne + 2 by Ne + 2 submatrices.

• Explicit case: The mobility and capillary pres-
sure are held at the start of time state values.
The only coupling between cells is through the
cell pressures. Strictly this is not an IMPES
(IMplicit pressure, Explicit Saturation) method,
rather an IMPEM (IMplicit Saturation Explicit
Mobility) method.

The J acobian only has band terms in the pressure
equation and can be reduced to a single variabie
per cell by using the conservation equations to
'eliminate the terms in molar density from the
volume balance condition.

• The Implicit Saturation Case: We introduce
three new variables: Xo, Xg and Xw. These will
be treated implicitly and represent the phase sat-
urations. Three new equations are required to
define these extra variables and ensure that they
represent the required saturations. These are the
saturation balance conditions:

Sp(P, m) are the saturations as deterrnined by
the usual Gibbs energy conditions. Note that
these are diagonal equations: they do not involve
solution variables in any neighbouring grid cells.
The conditions that the residuals go to zero en-

sure that Xo,Xg,Xw converge to the true satu-
rations.

The capillary pressure and relative permeabilities
are now made functions ofXo,Xg,Xw:

J" K (XT+6T)\rp = rp

The J acobian only has band terms in the
P, Xo, Xg, Xw and can be reduced to a four var i-
able per cell system.

Implicit and explicit mobility treatments may be corn-
bined in adaptive implicit methods.

12 Appendix 2: Results of Linear
Solver Tests.

An extensive set of data sets were used to evaluate the
performance of the linear solver , but only a representa-
tive sample of these are reported here. We investigated
the convergen ce ofthe linear solver as a function of do-
main size. All results quoted here are for the default
reduction in linear solver residual of 1.0E-10 which is
approximately six orders of magnitude smaller than
that used by Bhogeswara and Killough (ReL 4).

Test 1: Convergence dependence on domain
srze,

We used the test set SPE3XlO, (ReL 7), which is
built up of 10 SPE3 data sets (ReL 8). The model has
dimension 45x18x4 and 3240 active cells. There are 10
production and 10 injection wells.

We ran a series of studies for the AlM solution
method and totaled the number of linear iterations

27

10 Parallel Reservoir Simulation with Nested Factorisation ECMOR V, 1996

required for eaeh case. These results are summarised
in table 1.

Non-Linear Linear Linears
Iterations Iterations INon-linear

Single domain101
5 domains 101
15 domains 101
45 domains 100

1690
2911
3678
6488

17
29
36
65

Table 1.

For the worst ease (45 domains) eaeh domain has only
36 aetive eells, but the total number of linears is less
than four times that of the single domain. Using do-
mains with 200-300 eells inereases the number oflinear
iterations by 70%.

Test 2: lmplicit black oil parallel test set.

This is a fully implieit blaek oil model. The grid size
is 40x40x3 with 4800 aetive eells.

Non-Linear Linear Linears
Iterations Iterations IN on-linear

1 domain 218
15 domains 218

2384
3080

11
14.1

Table 2.

The in ere ase in linear iterations is 30%.

Test 3: AlM North sea compositional model.

The grid size is 87x34x11 with 20637 active eells.
There are fault non- neighbour connections in both
the x and y direetions plus pineh-out eonnections with
a total of 263 non-neighbour eonnections.

Non-Linear Linear Linears
Iterations Iterations INon-linear

1 Domain 2827
9 domains 2888

57652
63715

20
22

Table 3.

The 10% inerease in linear iterations is relatively small
whieh ean be explained by the fragmented nature of
the reservoir. There are several regions whieh are eon-
neeted areally by only a few grid bloeks and henee
an areal deeomposition has a small effeet on the total
number of linear iterations.

Test 4: AlM North sea compositional model
with horizont al wells.

The grid dimension is 21x19x22 with 7444 active eells
including non-neighbour eonneetions.

Non-Linear Linear Linears
Iterations Iterations INon-linear

1 domains 372
9 domains 364

3215
3854

8.6
10.6

Table 4.

The inerease 20% inerease in iterations is similar to
that for test 3.

28

