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Abstract

Within the framework of Bayesian statistics, realizations or estimates of rock property fields can be generated b
automatic history matching of production data using a prior model to provide regularization. In this contex
automatic history matching requires the minimization of an objective function which includes both model an
data mismatch terms. For large scale problems, the computational efficiency and robustness of the optimizatio
algorithms used for minimization are of paramount importance. From a comparison of algorithms for a variety
history matching problems, a scaled limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm was identifie
as the most promising for large scale optimization problems.

Introduction

We consider the application of automatic history matching to estimate or simulate reservoir model variables ths
honor production data and are consistent with a prior geostatistical model. Reservoir variables may represern
gridblock permeabilities and porosities, local or zonal transmissibility or pore volume multipliers, or geometr
variables that describe the shape, size and location of objects. The Bayesian formulation of the problems considere
here is identical to the one considered by Li et al. (2001), except that work considered only the Gauss-Newton (GN
method and a modified Levenberg-Marquardt (MLM) algorithm for minimization. However, unless the number
model parameters or the number of data is relatively small, implementation of these methods in a way that require
calculation of the sensitivity of each predicted data to each model parameter is impractical. Here, we compare
variety of gradient-based algorithms on the basis of computational efficiency and memory requirements. Qur gos
is to identify optimization algorithms that can be applied for automatic history matching when the number c
conditioning production data ranges from a few hundred to several thousand and the number of reservoir variable
ranges from several hundred to tens of thousands. Although reparameterization methods, such as zonation, gra
zones, pilot points, spectral decomposition, and subspace methods, are sometimes used to reduce the number ¢
sensitivities calculated and the number of variables estimated directly, no model reparameterization is applied fo
the problems considered in this paper.

Quasi-Newton (variable metric) methods, which are based on generating an approximation to the inverse of th
Hessian matrix, require only the gradient of the objective function and thus avoid the computation of individus
sensitivity coeflicients needed to directly form the Hessian matrix. Here, only the Broyden-Flecher-Goldfarb-Shann.
(BFGS) quasi-Newton method is considered since it has proved to be more robust in practice than other algorithm:s
see Kolda et al. (1998). It is well known that scaling can improve the convergence attributes of quasi-Newton (QN
methods, and numerous suggestions have been made for calculating scaling factors; see, in particular, Oren ant
Luenberger (1974) and Shanno and Phua (1978). Here, we identify scaling procedures that have worked well for th
limited number of history matching problems that we have tried. For large scale optimization problems, memor
requirements may be reduced by replacing the BFGS algorithm with the limited memory BFGS (LBFGS) algorithn
in the form developed and implemented by Nocedal (1980).

Another minimization algorithm which uses only the gradient of the objective function is the nonlinear conjugat
gradient algorithm. Here, we use the Polak-Ribiére form of the nonlinear conjugate gradient algorithm; see Fletche
(1987). Efficiency of the conjugate gradient (CG) method depends primarily on the preconditioner used. Intuitively
one expects that BFGS will converge faster than CG unless one can find preconditioners for CG that contain simila
curvature information to that which is contained in the inverse Hessian approximation used in BFGS. Here, w
suggest two preconditioners. Although both often improve the performance of the the CG method, the resultin
algorithms are still significantly less robust than appropriately scaled BFGS and LBFGS algorithms.

Quasi-Newton methods have been employed previously in automatic history matching-problems by Yang an
Watson (1988), Masumoto (2000) and Savioli and Grattoni (1992). While these studies generally found that
self-scaling BFGS method is more robust and computationally efficient than CG, steepest descent, and standare
unscaled BFGS algorithms, the number of reservoir variables estimated was less than 25 in all examples considered
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Makhlouf et al. (1993) applied the conjugate gradient method to estimate 450 gridblock permeabilities by history
matching production data obtained under multiphase flow conditions. In one example, 110 iterations were required
to obtain convergence. In the second example considered, 222 iterations were required to obtain convergence.
However, the authors apparently did not use preconditioning.

Deschamps et al. (1998) presented an interesting comparison of the relative efficiency of several optimization
methods for automatic history matching of production data. They suggest that the most efficient optimization
method will be a hybrid scheme and specifically advocate schemes that combine a Gauss-Newton method with
another procedure. They reject the Levenberg-Marquardt scheme as relying too heavily on the steepest descent
method and do not present any comparisons based on this method. On the other hand, some results (see, for
example; Li et al. (2001)) indicate that a modified Levenberg-Marquardt (MLM) algorithm can be superior to the
Gauss-Newton method when initial data mismatches are very large. The Levenberg-Marquardt algorithm used by
Li et al. (2001), however, is a nonstandard one and is based on a regularized objective function.

Deschamps et al. also compared the hybrid methods with a pure quasi-Newton method. For the two history
matching problems they considered, the quasi-Newton method required on the order of three times as many
“equivalent simulation runs” to obtain convergence as most of the other methods. For the first example presented,
a synthetic case, the quasi-Newton method converged to a much higher value of the objective function than all the
other methods. However, it is not clear which quasi-Newton method they used, how they initialized the inverse
Hessian approximation, or whether they used scaling. The scaled quasi-Newton methods considered in this paper
perform much better than would be suggested by the results of Deschamps et al. (1998).

The History Matching Problem

Throughout, m denotes the vector of reservoir variables; mpyior denotes the vector of prior means; dops denotes
the set of conditioning production data; d,(m) denotes the corresponding predicted data for a given model m; Cps
denotes the prior covariance matrix; Cp denotes the covariance matrix for data measurement errors; N,, denotes
the number of reservoir variables and N4 denotes the number of conditioning production data. The prior probability
density function (pdf) for m is assumed to be multivariate Gaussian so by Bayes theorem, the posterior pdf for m
conditional to the data is given by

f(mldobs) = aexp{—O(m)}, (1)
where a is the normalizing constant and
1 - 1 _
O(m) = 5("" - mprior)TCM1 (m — Mprior) + §(dp(m) - dobS)TCDl(dp(m) — dobs)- (2)

Minimization of O(m) yields the maximum a posteriori (MAP) estimate. A conditional realization of m can be
generated by the randomized maximum likelihood method, (see, e.g., Oliver et al. (1996)). In this method, a
realization is generated by minimizing

Or(m) = 2(m — mue) T (m = mue) + +

2 2 (dp(m) — duC)TCBl(dp(m) — duc), (3)

where m, is an unconditional realization generated from the prior pdf, and d,. is obtained by adding noise to
dobs. Throughout, we simply let O denote the objective function that we wish to minimize.

Optimization Algorithms

Gauss-Newton and Levenberg-Marquardt

In generating the MAP estimate, the search direction in the modified Levenberg-Marquardt (MLM) algorithm can
be calculated from either of the following formulas:

-1
Sy = — [(1 + A+ G{c,;lck] [c;; (M, — Mprior) + GTCH (dp(mi) — dobs)}; (4)

Mg — Mprior T[ T] -1 [Gk (mk - mprior) ]
——— + Cp G (14 X)) G CuG — (d -d . 5
T + CMmGy |(1+ X)Cp + GrCuM Gy, T (dp(mr) = dobs) (5)
Choosing Ay = 0 in Egs. 4 and 5 gives the two corresponding formulas for the Gauss-Newton (GN) method. If
the GN or MLM algorithm is applied to construct a realization by minimizing O, given in Eq. 3, then do,s and
Moprior, Should be replaced by dyc and myc, respectively, in Eqs. 4 and 5. Once émy1, has been computed, we can
compute mpy1 = my + prdmiy1 where py is the step size, which can be calculated by the restricted step method;

5mk+1 =




see Fletcher (1987). Although a restricted step procedure can also be applied when MLM is used, we use a simpl
procedure where we decrease Ay by a factor of 10 if O(my41) < O(ms), and if not, we increase Ag by a factor ¢
10 and redo the step. An initial value of A\g = 1000 works satisfactorily for most problems.

Applying Eq. 5 requires solving an Ny X Ny matrix problem. If this matrix problem is solved iteratively b
the conjugate gradient method, then one does not need to explicitly compute G; one only needs to be able t,
calculate Gu and GT'v for vectors u and v at each iteration of the conjugate gradient method. Mackie and Madde:
(1993) presented an implementation of this procedure in the geophysics literature; Chu et al. (2000) introduced .
similar procedure into the petroleum engineering literature for single-phase flow problems. A somewhat differen
and clearer presentation of how one can compute Gu and GTv is given in Abacioglu (2001). Computation of G
requires a forward run of the simulation. Computation of GTv requires one solution of the adjoint system. As w
do not believe this method is viable when the number of data is large, we have not considered it here.

BFGS and LBFGS

The search direction in the Gauss-Newton method is obtained by solving

Hpdmpy = —gg, (6

where k is the iteration index, g, denotes the gradient of the objective function evaluated at my, and H. r denote
the Hessian matrix given by
Hy = Ci + GICplGy. (7

The Ng x N, matrix Gy represents the coefficient matrix evaluated at my. If Ny and N,, are both large, th
evaluation of all entries of G}, by either the adjoint or gradient simulator method is not fea51ble

In quasi-Newton methods, H is approximated by a symmetric positive definite matrix H_ PR !, which is correctec
or updated from iteration to 1teratlon All updating formulas involve the difference in gradients, yx = gry1 — gi
and the difference in iterates, sy = my41 — my. The BFGS updating formula is given by

~ . HS YrY H sksT |
F-l = (Hl L_k__Jrva)Jr_k, 8
k+1 = Ye{ {1k Hk " k Sgyk (8

where ~y;, is the scaling factor and

rr—1

— (0T ir-1, \1/2( Sk H "y, |

vk = (Y Hy k) ( - == . €]
" siyk ylHy'yk

If no scaling is done v = 1 for all k. If scaling is done only at the first update, then v, = 1 for k> 0. In ou
applications, H ! k41 is an Ny, x Ny, matrix. Thus, application of Eq. 8 requires the storage and multiplication o
Nm x Np, matrices. If the number of reservoir variables is very large, the form of the LBFGS, (limited memor;
BFGS) algorithm implemented by Nocedal (1980) becomes an extremely attractive alternative.

It is well known that the BFGS update formula of 8 can be rewritten as

Hl = wVTHWVi + pesist, (10
where py = 1/yf'sg, and V}, = I — pkyks{. To motivate LBFGS, Nocedal rewrote Eq. 10 as

Hk_+1 =V, VkT—p+1(’Ykgo—l)Vk—p+1 Vel Vi
+ VkT o Vk{p+2pk—p+15k_p+13{—p+1Vl Vi
(11
+ Vil pr—18k-18E_1 Vi

T
+ PkSkSE

where p = min{L, k + 1} and the parameter L is an integer chosen by the user. Although we have used the same
notation for the scaling parameter in Egs. 11 and 10, the two equations are identical if and only if v = 1 for al
k > 0. Nocedal (1980) 1mplemented Eq. 11 in a way that avoids storing any matrices except H;' and he suggest:
using a diagonal matrlx for Ho , so the storage required is minimal. His algorlthm has the followmg advantages
(i) for k > 0, H; k is not computed explicitly or stored; instead, the vector H k Lgx is formed directly and the
search direction 6mk+1 is set equal to the negative of this vector; (ii) H & gr is calculated using only dot products
of the vectors H0 go, st and y;, for | = k — 1,k — 2,...,max{0,k — L}. If L is greater than the total number o:
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iterations allowed, then LBFGS becomes equivalent to BFGS if 4 = 1 for £ > 0. Otherwise, LBFGS requires
less memory and less computational time per iteration than BFGS even if Nocedal’s implementation is used for
the BFGS algorithm. If L is too small, however, the number of iterations required for convergence is increased.
For the history-matching problems we have considered to date, L = 30 has proved to be a good choice. For the
history-matching problems considered in this paper, larger values of L resulted in a negligible improvement in
convergence properties, but using values of L much smaller than 20 resulted in a noticeable degradation in the rate
of convergence and resulted in higher values of the objective function at convergence.

Nocedal suggested choosing I:IO_ ! as.a diagonal matrix. From Eq. 7, the obvious choice would then be the
diagonal of Cjy, but with this choice the smoothing effects of multiplication by Cjps are lost and the rock property
fields are much rougher than would be expected based on the prior model for reservoir variables. A better choice is
fIO_ 1 = C)y, which then requires storage of Cj; and multiplication of vectors by Cjs using sparse matrix techniques.

Line Search

Each iteration of the algorithm requires an approximate line search to determine the step size in the search
direction. The choice of the line search can affect both the convergence properties and the computational efficiency.
An exact line search would determine the step size oy so that @ = a, minimizes O(mk + admypy) over . Each
new approximation for ay requires at least one re-evaluation of the objective function which requires one forward
simulation run. As is typical in practice, we do not do an exact line search; instead, we terminate the line search
when the Wolfe conditions are satisfied; see Fletcher (1987). In our approximate line search, we (a) do one iteration
of the Newton-Raphson algorithm starting with an initial guess equal to zero to obtain the approximation a}; (b)
determine a quadratic g(), such that g(0) = O(ms), ¢'(0) = VO(my) and g(ak) = O(mg + aldy) and set the new
approximation of ay equal to the minimum of g(«); (c) successively cut the step size by a factor of 10. We stop
the line search whenever the Wolfe conditons are satisfied. In the most cases, this occurs after step (a) and the
necessity to activate step (c) is extremely rare.

Computational Requirements

Here we give a rough assessment of the computational efficiency of GN (Gauss-Newton), MLM (Modified Levenberg-
Marquardt), PCG (preconditioned conjugate gradient), BFGS and LBFGS. Our assessment of the computational
efficiency and memory requirements of the BFGS algorithm, and our implementation of the BFGS algorithm, are
based on the update formula given in Eq. 10. In the evaluation of computational efficiency, we count only the
number of adjoint solutions and the number of reservoir simulation runs required by each method. Moreover, we
count one adjoint solution over the total time interval of a simulation run as one equivalent simulation run, even
though in our implementation, an adjoint solution typically takes less than one half the time of a simulation run.
Moreover, we do not account for computational savings that may be obtained by solving the adjoint system with
multiple right-hand sides in cases where several sensitivity coefficients are calculated; see Wu et al. (1999). We also
assume that only one iteration of the approximate line search algorithm is done. We provide only a summary of
the results without details.

In GN and MLM, if the data are evenly distributed in the time domain, Ng/2 + 1 simulation runs are required
at each GN or MLM iteration. In BFGS, LBFGS and PCG, the total computational cost of implementing one
iteration is equivalent to 3 simulation runs. Thus, BFGS, LBFGS and PCG are (Ng/2 + 1)/3 times faster than
GN and MLM for each iteration. For example, if we have 1000 data, one iteration of GN or MLM will require 167
times as much time as one iteration of BFGS, LBFGS and PCG.

Table 1 gives a rough estimate of the number of double precision real numbers used by each algorithm when
applied to minimize the objective function of Eq. 2 or Eq. 3. (Recall that Ny is the number of production data, Ny,
is the number of model parameters, and L is the number of previous vectors used in the LBFGS algorithm.) Only
the memory used by the algorithm itself is counted, e.g., the memory required to run the reservoir simulator is not
included. For convenience, we use one memory unit to stand for the memory occupied by one double precision real
number. From the results of Table 1, we see that the full-memory version of BFGS uses the most memory which
is on the order of N2 ; conjugate gradient uses the least memory which is on the order of Np,, and Gauss-Newton
or Levenberg-Marquardt and limited memory BFGS have intermediate memory requirements. The memory used
by limited memory BFGS depends on the number of previous vectors (denoted by L in Table 1) used to construct
the update of the approximate inverse Hessian.

Scaling

For BFGS and LBFGS, scaling can have a significant effect on the rate of convergence. The self-scaling variable
metric (SSVM) method developed by Oren and Luenberger (1974) and Oren (1974) is motivated by the desire




Table 1: Memory used by each algorithm

No. of DP real numbers
GN/LM (242 x Ny) x N,
CG 10 x N,
PCG 10 x N, + memory for preconditioner
BFGS (124 Np) x Np,
LBFGS (9+2L) x N,

to choose a y;_; so that the condition number of R = H,i/ 2I:Ik' IH;/ % is as close to one as possible. If f{k* 1
is identical to the inverse of the true Hessian, Hy, then this condition number is equal to one. For a quadratic
objective function, these authors provide theoretical conditions and a method for computing y that insure that
(1) Amin £ 1 < Apax where Apin and Apax, respectively, denote the minimum and maximum eigenvalues of Ry; anc
(ii) the condition number of Ryy; is less than or equal to the condition number of Ry. A quasi-Newton method
which satisfies these two conditions is referred to as a self-scaling variable metric method. (Throughout, a quadratic
objective function refers to a quadratic which has a Hessian matrix that is real symmetric positive definite.) For
stability considerations, it is also desirable that the condition number of H e ! not be too large, see Oren and
Spedicato (1976). In particular, if H, b ! is a singular matrix, then for [ > k, all m! will be restricted to a subspace
of Np,-dimensional Euclidean space; see Murray (1972). If the model which minimizes the objective function is not
in this subspace, the algorithm can not converge to this model. Oren and Spedicato (1976) proposed an “optimal”
conditioning of variable metric methods; specifically, they provide a procedure for calculating 7y so that an upper
bound for the condition numbers of H i J:I and H,H & _:1 is minimized. According to their results, one should actually
consider switching between different update formulas from the general Broyden family from iteration to iteration.
As for the results of Oren and Luenberger, these results assume that the quasi-Newton method is applied to a
quadratic objective function and that an exact line search is performed at each iteration.

From computational experiments, we have found that the general switching rule proposed by Oren and Spedicato
exhibits poorer convergence properties than are obtained by applying the BFGS update at every iteration and then
computing the optimal v from the formula they provide. In a sense, however, our preferred method for computing
7Y for LBFGS discussed later represents a modification of the switching rule proposed by Oren and Spedicato.

The principal objection to SSVM algorithms that has been raised is that the sequence H k+1 does not converge
to the true inverse Hessian in n iterations in the case where the objective function is an n-dimensional quadratic,
whereas variable metric methods from the Broyden family satisfy this quadratic termination property if v, = 1 for
all k£ > 0. Motivated by this reasoning, Shanno and Phua (1978) suggested that one should only scale at the first
iteration and then do no further scaling.

In our work, we have found the optimal condition of Oren and Spedicato (1976) is robust and efficient if the
BFGS updating formula, Eq. 8, is applied at every iteration. For the BFGS method, their procedure for calculating
7% reduces to

Sk Yk
— k . 12
Tk y;f Hk—lyk ) ( )
we use this equation to compute the scaling factor for BFGS. Shanno and Phua (1978) suggested scaling only flo_ !
using 7o computed from Eq. 12 with £ = 0 and then setting v, = 1 for all k£ > 0. This scheme is the one referred
to as the self-scaling variable metric method in Yang and Watson (1988).

For the LBFGS algorithm, we have found a variant of the optimal switching rule given by Oren and Spedicato

(1976) which works well. Specifically, we compute

T
H,
7 o= k%R (13)
Sk Yk
T
- Sk Yk
v Ho 'y
and then determine the scaling factor vy by the following rule:
Tk if 7 <1.0
Y = {~ . (15)
Ok- otherwise.

Again, we can scale only at the first iteration or scale at all iterations.
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In our applications, the prior covariance matrix is used as the initial approximation to the inverse Hessian,
ie, Hy' = Cu. A somewhat simpler procedure, which yields a less robust algorithm, is to set H;! equal to the
diagonal matrix D obtained from Cps by setting all off diagonal elements equal to zero. Even when fIO' Y= Cu,
we have found that it is satisfactory to compute 7, by

T H-1
7= kD Sk (16)
Sk Yk

instead of using C’;Il in place of D! in Eq. 16. This method avoids solving the matrix problem Cpzy = s, for z.

Figs. 1.(a) and (b) show the behavior of the objective function obtained by using BFGS and LBFGS, respectively,
with different scaling schemes. The results pertain to history matching WOR, GOR and pressure data for the 2D
three-phase flow example considered later in this paper. In both figures, the diamonds represent the case where
BFGS and LBFGS were applied without scaling. The plus signs represent the case where BFGS and LBFGS
were scaled only at the first iteration. The circles represent the case where BFGS and LBFGS were scaled at all
iterations. The results clearly demonstrate the advantages of scaling; i.e., convergence is obtained in significantly
fewer iterations, and at convergence, a much lower value of the objective function is obtained. Also note that scaling
at all iterations is superior to scaling only at the first iteration, especially for the LBFGS algorithm. The scaling
factor of Eq. 12 can not be applied with Nocedal’s limited memory algorithm because H 5 1 for k > 0, is never
explicitly computed or stored. When Eq. 12, with H & ! replaced by H, 0 ! was applied to compute the scaling factor
for LBFGS, 74 iterations was required to obtain convergence and the value of the objective function at convergence

was equal to 18. In the examples presented below, scaling was done at all iterations when using the BFGS and
LBFGS algorithms.

10°
~—0—No Scaling —o— No Scaling
. —+—Initial Scaling —+— Initial Scaling
o 10 —0— All Scaling ] 10° —o— Ali Scaling
2 ®
> >
§' 813
B8 °
£ g
gy J
g 10 L; 10°
2 2
Q0 $ L
5 10°; 204§ o
(o] Q By,
o] -
1 i %mmnmno
10 T T T T T T T T T T 10 7 T T T T
O 10 20 30 40 50 60 70 80 90 100 110 0 20 40 60 80 100
Iteration Index Iteration Index
(a) BFGS (b) LBFGS
Fig. 1: Comparison of scaling procedures.
Results

3D single gas phase example

This example pertains to flow in a single-phase gas reservoir. Reservoir simulation was done on a 20 x 20 x 4 grid.
Two wells were completed in this reservoir. Well 1 was shut in for two days and then was produced at the rate of
4 x 10* Mscf/day for two days. Well 2 produced at the rate of 3.5 x 10* Mscf/day for the first two days and was
then shut in for the following two days. We used 22 measured data from each well as conditioning data. Thus, a
total of 44 data were history matched. The reservoir variables are the gridblock porosities, horizontal and vertical
permeabilities and the well skin factors. The total number of reservoir variables is 4808. Stochastic simulation
was done using the randomized maximum likelihood method. Ten realizations were generated using five different
optimization algorithms: (i) MLM, (ii) preconditioned conjugate gradient (PCG) with Cps as the preconditioner
(CM-PCG), (iii) PCG with the approximate inverse Hessian generated from the LBFGS equation used as the
preconditioner (LBFGS-PCG), (iv) BFGS and (v) LBFGS. Table 2 gives the number of iterations required to
obtain convergence and the value of the objective function at convergence for each minimization algorithm and for
each realization. Results obtained by averaging the results for each set of ten conditional realizations are given




in the last column of the table. From the results, we see that LBFGS and LBFGS-PCG behave similarly. T
convergence properties of both of these algorithms are superior to CM-PCG and BFGS; i.e., LBFGS and LBFC
PCG require fewer iterations to obtain convergence and yield a lower value of the objective function at convergen
Based on results presented in the computational requirements section, on average, LBFGS and LBFGS-PCG :
about 7.7 times faster than MLM per iteration. As shown in Table 2, however, MLM requires about 2.3 times few
iterations to converge. Therefore, on average, LBFGS and LBFGS-PCG are about 3.3 times faster than MLM
this particular example.

Table 2: Comparison between algorithms for a 3D single gas example.

R1 | R2 |R3|R4| R5 [R6 | R7 | R8 | RO | R10 Average
Obj. 38 | 30 | 21 |33 ] 43 [ 28 | 27 | 38 | 40 34 33.2

MLM No. Iter. 8 14 |12 ] 8 13 13| 21 8 14 10 12
CM-PCG Obj. 153 [ 146 | 70 | 94 | 347 | 42 | 184 [ 213 [ 230 | 45 152
No. Iter. | 12 | 20 [ 11 | 23] 19 | 64 5 17 19 23 21.3
e :
BFGS Obj. 59 | 52 | 35 | 41 | 70 | 41 ] 39 [ 53 [ 54 87 53

No. Iter. | 33 | 17 [ 18 [ 19 | 33 [ 38 | 18 | 42 | 35 52 30.5

Obj. 44 | 51 | 29 | 38| 57 [ 33 | 36 | 47 | 54 36 42.5
LBFGS-PCG No. Iter. | 23 | 17 [ 23 131 [ 23 | 38 | 21 | 35 | 20 30 26.1

TEFGS Obj. 43 | 41 | 31 ]38 155 |33 ] 35 [ 54 | 54 36 42
No. Iter. | 34 | 22 [ 18 [ 38 | 21 [ 35 | 26 | 24 | 21 34 27.3

2D three-phase example

This synthetic example pertains to a two-dimensional, three-phase flow problem simulated on 15 x 15 x 1 gri
The gridblock porosities are fixed. The truth case, from which synthetic production data were generated, is shov
in Fig. 3 (a). Note that there are three distinct zones with log-permeability uniform in each zone. This examp
has the advantage that the problem is small, so all methods require only modest computer resources. Moreove
because only three log-permeability values are involved, it is easy to visualize the quality of the MAP estimate
log-permeability. The prior covariance matrix is generated from an isotropic spherical variogram with range equ
to 6 gridblocks. Four producers are located near the four corners of the reservoir and one injector is located at tl
center. GOR, WOR and flowing bottomhole pressure ( Pwy) data from the four producers and p,,; data from t}
injector are used as observed conditioning data. The total number of data is 364.

MLM, CM-PCG, LBFGS-PCG, BFGS, LBFGS with the diagonal of Cjs as the initial Hessian inverse a
proximation (LBFGS-DCM) and LBFGS with the full matrix of Cp as the initial Hessian inverse approximatic
(LBFGS-FCM) were tested for this problem. Fig. 2 shows the behavior of the objective function. As shown, MLI
converged in 9 iterations to an estimate m such that O(m) = 13.3. CM-PCG and LBFGS-PCG, respectivel
reduced the objective function from 906,670 to 28.9 and 35.2 in 100 iterations; at the hundredth iteration, CM
PCG and LBFGS-PCG had not converged based on the stopping criteria. The BFGS algorithm converged in ¢
iterations to an estimate m such that O(m) = 16.2; LBFGS-DCM converged in 40 iterations to an estimate
such that O(m) = 13.7 and LBFGS-FCM converged in 33 iterations to an estimate m such that O(m) = 14.4
Based on the discussion in the computational requirements section, for this example, LBFGS-FCM is expecte
to be roughly 61 times faster than MLM per iteration. However, MLM required about 4 times fewer iteratior
to converge. Therefore, LBFGS-FCM was expected to be about 16 times faster than MLM overall based on tk
approximate results of the computational requirements section. Table 3 shows the real CPU time used by tk
different algorithms. In terms of the real CPU time, optimization with the LBFGS-FCM algorithm was about 1
times faster than optimization with MLM. Fig. 3 (b) shows the log-permeability field obtained by LBFGS-FCM
We can see this model is very close to the log-permeability field obtained by the MLM method and is similar t
the true model. The log-permeability field obtained with the LBFGS-DCM is not shown here but is much roughe
than those shown because the smoothing effect of multiplication by C), is lost when we use only the diagonal «
C as the initial approximate inverse Hessian.

Also note that in this case, both preconditioned nonlinear conjugate gradient methods perform relatively poorl
and unlike in the gas reservoir example, generating an approximate inverse Hessian using LBFGS formulas gives
worse preconditioning matrix than simply using Cj; as the preconditioner. We should note, that when we app!
the LBFGS formula in conjunction with the preconditioned CG algorithm, the yi’'s and gx’s used in the formul

are computed from the CG equations and are hence different than those that would be obtained with the actu
LBFGS method.
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Fig. 2: Behavior of the objective function.

Table 3: Comparison of the CPU time used by different minimization algorithms

Algorithms | Scaling Scheme | CPU time (seconds)
MLM N/A 2930
CM-PCG N/A 887
LBFGS-PCG All Scaling 904
BFGS Initial Scaling | 923
LBFGS-DCM All Scaling 279
LBFGS-FCM All Scaling 263

y-direction

y-direction
®

y-direction

3 5 8 10 13 15 3 5 8 10 13 15 3 5 B 10 13 15

®-direction x-direction x-direction

(a) True (b) LBFGS-FCM (c) MLM

Fig. 3: The log-permeability field.

3D three-phase example

In this example, a 3D three-phase flow problem on a 40 x 40 x 6 grid is considered. The true log-permeability field
is an unconditional realization generated by Gaussian co-simulation. The top layer of the true log-permeability
field is shown in Fig. 4 (¢). The porosity field is fixed. Six producers and four water injection wells are completed
in the reservoir. Wellbore pressure (p,,s), GOR and WOR data from the producers and p,,y data from the injectors
are used as conditioning data; the total number of data is 880. Fig. 4 (a) shows the top layer of the unconditional
realization of the model which was used as the initial guess in the history-matching process. Fig. 4 (b) shows
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the corresponding layer of the model obtained by history matching the production data. Optimization was d
with the scaled LBFGS algorithm. The objective function was reduced from a initial value of 3 x 10° to 675 in
iterations. Note that the conditional realization obtained by history matching captures the main features of 1
true model.

(a) Unconditional (b) Conditional (c) True

Fig. 4: Unconditional, conditional and true realizations of the log-permeability field in the top layer.

Figs. 5 (a) through (c) show the data match for the pressure, GOR and WOR from one producer. In all the
figures, diamonds represent the data obtained from the unconditional realization, i.e., the initial model, cire
represent the observed data and the plus signs represent the data obtained from the model which was obtain
by history matching all observed data. Note that good matches were obtained. Matches of similar quality we
obtained at all wells. It is important to note that the size of the problem precluded the application of MLM a;
the standard BFGS algorithm with the personal computer used for the study.
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Fig. 5: Data matches.
-
Conclusions

We compared the convergence performance of a set of gradient-based nonlinear optimization algorithms includiz
modified Levenberg-Marquardt, preconditioned conjugate gradient, BFGS and limited memory BFGS on a set
history matching problems. The implementation of BFGS used was based on explicitly computing and storing tl
approximate inverse Hessian at each iteration; although computationally inefficient, this implementation allows o1
to apply all scaling procedures that have been suggested in the literature. Our results indicate that for large sca
history matching problems, the limited memory BFGS algorithm requires significantly less time and less memo
than the modified Levenberg-Marquardt and BFGS algorithms, but yvields results of comparable quality based ¢
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the value of the objective function obtained at convergence, and the model obtained at convergence. Scaling has a
significant effect on the performance of the LBFGS and BFGS algorithms. The scaling factors used here result in
significant improvement in the convergence properties of the algorithm as compared to the no scaling case. For the
examples considered here, our implementations of preconditioned conjugate gradient algorithms were less robust
than the scaled BFGS and LBFGS algorithms.
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