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Abstract

Within the framework of Bayes ian statistics, real izations or estimates of rock property fields can be generated t
automatic history matching of product i on data using a prior mod e l to provide regularizat ion . In this contex
automat i c bistory matching r equires the minimiz ation of an object ive funct ion which includes both mode l an
data mi smatch term s . For large sca le problems, the computati onal effic i ency and robustness of the op timiz a ti o
a lgori thm s used for minimizat ion are o f paramount importan te . From a compar ison of algorithms for a variety c
bi s to ry matchi ng problems, a sca led limited memory Broyden-Fletcher-Goldfarb-Shanno a lgorithm was identifie
as the most promi sing for large sca le optimizat ion problems .

Introduction

We consider the application of automatic bistory matching to estimate or simulate reservoir model variables thé
honor production data and are consistent with a prior geostatistical model . Reservoir variables may represer
gridblock permeabilities and porosities, local or zonal transmissibility or pore volume multipliers, or geometri
variables that describe the shape, size and location of objects . The Bayesian formulation of the problems considere
here is identical to the one considered by Li et al . (2001), except that work considered only the Gauss-Newton (GN
method and a modified Levenberg-Marquardt (MLM) algorithm for minimization . However, unless the number c
model parameters or the number of data is relatively small, implementation of these methods in a way that requirE
calculation of the sensitivity of each predicted data to Bach model parameter is impractical . Here, we compare
variety of gradient-based algorithms on the basis of computational efficiency and memory requirements . Our goj
is to identify optimization algorithms that can be applied for automatie bistory matching when the number c
conditioning production data ranges Erom a few hundred to several thousand and the number of reservoir variable
ranges Erom several hundred to tens of thousands . Although reparameterization methods, such as zonation, gra
zones, pilot points, spectral decomposition, and subspace methods, are sometimes used to reduce the number c
sensitivities calculated and the number of variables estimated directly, no model reparameterization is applied fc
the problems considered in this paper .

Quasi-Newton (variable metric) methods, which are based on generating an approximation to the inverse of th
Hessian matrix, require only the gradient of the objective function and thus avoid the computation of individu
sensitivity coefficients needed to directly form the Hessian matrix. Here, only the Broyden-Flecher-Goldfarb-Shann
(BFGS) quasi-Newton method is considered since it bas proved to be more robust in practice than other algorithm :
see Kolda et al . (1998) . It is well known that scaling can improve the convergente attributes of quasi-Newton (QN
methods, and numerous suggestions have been made for calculating scaling factors ; see, in particular, Oren ani
Luenberger (1974) and Shanno and Phua (1978) . Here, we identify scaling procedures that have worked well for th
limited number of bistory matching problems that we have tried . For large scale optimization problems, memor
requirements may be reduced by replacing the BFGS algorithm with the limited memory BFGS (LBFGS) algorithr.
in the form developed and implemented by Nocedal (1980) .

Another minimization algorithm which uses only the gradient of the objective function is the nonlinear conjugat
gradient algorithm. Here, we use the Polak-Ribière form of the nonlinear conjugate gradient algorithm ; see Fletche
(1987) . Efficiency of the conjugate gradient (CG) method depends primarily on the preconditioner used . Intuitivel3
one expects that BFGS will converge faster than CG unless one can find preconditioners for CG that contain simila
curvature information to that which is contained in the inverse Hessian approximation used in BFGS . Here, w
suggest two preconditioners . Although both often improve the performance of the the CG method, the resultin,
algorithms are still significantly less robust than appropriately scaled BFGS and LBFGS algorithms .

Quasi-Newton methods have been employed previously in automatie bistory matching-problems by Yang ani
Watson (1988), Masumoto (2000) and Savioli and Grattoni (1992) . While these studies generally found that .
self-scaling BFGS method is more robust and computationally efficient than CG, steepest descent, and standar
unscaled BFGS algorithms, the number of reservoir variables estimated was less than 25 in all examples considere d
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Makhlouf et al . (1993) applied the conjugate gradient method to estimate 450 gridblock permeabilities by history
matching production data obtained under multiphase flow conditions. In one example, 110 iterations veere required
to obtain convergente. In the second example considered, 222 iterations veere required to obtain convergente .

However ; the authors apparently did not use preconditioning .
Deschamps et al . (1998) presented an interesting comparison of the relative efficiency of several optimization

methods for automatic bistory matching of production data . They suggest that the most efficient optimization
method will be a hybrid scheme and specifically advocate scheures that combine a Gauss-Newton method with

another procedure . They reject the Levenberg-Marquardt scheme as relying too heavily on the steepest descent
method and do not present any comparisons based on this method . On the other hand, some results (see, for

example; Li et al . (2001)) indicate that a modified Levenberg-Marquardt (MLM) algorithm can be superior to the
Gauss-Newton method when initial data mismatches are very large . The Levenberg-Marquardt algorithm used by

Li et al . (2001), however, is a nonstandard one and is based on a regularized objective function .

Deschamps et al . also compared the hybrid methods with a pure quasi-Newton method . For the two bistory

matching problems they considered, the quasi-Newton method required on the order of three times as many
"equivalent simulation runs'' to obtain convergente as most of the other methods . For the first example presented,
a synthetic case, the quasi-Newton method converged to a much higher value of the objective function than all the

other methods . However, it is not clear which quasi-Newton method they used, how they initialized the inverse
Hessian approximation, or whether they used scaling . The scaled quasi-Newton methods considered in this paper
perform much beuer than would be suggested by the results of Deschamps et al . (1998) .

The History Matching Problem

Throughou t, m denotes the vector o f reservoir variables ; 712prior denotes the vector of prior mean s ; dobs deno tes

the set of conditioning product ion data ; dp(m) denotes the corresponding predicted data for a given model m; CM

denotes the prior covariance matrix ; CD d eno tes the covariance matrix for data measurement errors ; N„ denotes

th e numb er of reservoir variables and Nd denotes the numbe r o f condi t ioning product ion data . The pri or pr obab ility

den sity function (pdf ) for m is assumed to be multivariate Gauss i an so by Bayes theorem , the posterior pdf for m

condit i onal to the data is g iv en by
f (midobs) = aexp{-O(m)}, (1)

where a is th e norma liz ing constant and

O(m) =
1

(m - mPrior)TCM ( ?1Z - 17LP rior ) + 2 ( dp (m) - dobs)T CD1
(
d

p(
m) - dobs)• (2)

Minim ization of O(m) yields the maximum a posteriori (MAP) estimate . A condit ional real ization of m can be

generated by the r andomiz ed maximum likelih ood method , (see, e .g ., Oliver et a l . (1996 )) . In this method , a

rea lization is generated by minimi z ing

0,(m) = 2 (m - muc)T CMl (m -mui) + 2 (dp (m) - duc )T cDl
(
dp

(
m) -dus), (3)

whe re mui is an unconditional realizat i on generated from the pri or pdf , and dus is ob tained by adding noise to

dobs• T hroughout, we simply let ó denote the objective function that we wish to minimize .

Optimization Algorithms

Gauss-Newton and Levenberg-Marquardt

In generating the MAP estimate, the search direction in the modified Levenberg-Marquardt (MLM) algorithm can
be calculated from either of the following formulas :

j i
(S?12k+ 1 = - L( 1 + A k )CMl + GlT-~ CD 1 Gk, [C,vtl (mk - mPrior) + Gk cDl ( dp(mk) - dobs)] ; (4)

m k - mprior T T l 1 f G k (mk - mprior )
Sm~+i =

1
+ 4 + C,~,IGk [( 1 + ~~)cD + Gr~C,yrG k 1 L 1 + 4 - ( dp (m k ) - dot5)] (5 )

Choosing 4 = 0 in Eqs . 4 and 5 gives the two corresponding formulas for the Gauss-Newton (GN) method . If

the GN or MLM algorithm is applied to construct a realization by minimizing OT given in Eq . 3, then dobs and

mprior, should be replaced by dus and mui, respectively, in Eqs . 4 and 5 . Once bmk+l, bas been computed, we can

compute m k+l = m k + µkbmk+l where µk is the step site, which can be calculated by the restricted step method ;



see Fle tcher (1987 ) . Al though a restric ted step procedure can al so be applied when MLM is used, we use a simpi
procedure where we decrease 4 by a factor of 10 if Ó(m k+l) < O(me), and if not, we increase >'k by a factor c
10 and re do the step . An ini tial value of Ao = 1000 works sati s factorily for most problems .

Applying Eq . 5 r equires solving an Nd x Nd matrix problem . If this matrix problem is solved i te rat ive ly b;
the conjugate gradient method, then one does not need to exp l ic i tly compute G ; ene only needs to be ab le t;
cal culate Gu and GTV for vetto r s u and v at each iteration of the conj ugate g r adient method . Mackie and Madd el
(1993) presented an implementation of this procedure in the geophys i cs literature ; Chu et al . (2000) introduced ;
similar procedure into the pet r o leum engineering li te rature for s ingl e-phase flow pr oblems . A somewhat differen
and clearer presentation of how one can compute Gu and GTV is given in Abacioglu (2001) . Computat ion of Q
requires a forward run of the simula tion . Compu tat ion of GTv r equires one so lut ion of the adjo in t system . As w,
do not be lieve this method is v iable when the number of data is large, we have not considered it here .

BFGS and LBFG S

The search direction in the Gauss-Newton method is obtained by solvin g

Hk bmk+ i = -9k ,

where k is the iteration index, gk denotes the gradient of the objective function evaluated at mk, and Hk denote
the Hessian matrix given by

Hk =
C

m
-1 + G kCD 1 ii k • (7

The Nd x NT,, matrix Gk represents the coefficient matrix evaluated at mk . If Nd and N.,,,, are both large, tho
evaluation of all entries of G k by either the adjoint or gradient simulator method is not feasible .

In quasi-Newton methods, Hk 1 is approximated by a symmetrie positive definite matrix k 1, which is correcter
or updated from iteration to iteration . All updating formulas involve the differente in gradients, y k = g k+l - 9k
and the differente in iterates, sk = m k+l - mk . The BFGS updating formula is given by

i i fik lykyk H~ 1 T \ sks~

yk H~ y k ~ S k y k

where ryk is the scaling factor and

Vk = \yk Hk 111011'
Sk k_ lyk l

C Sk yk Yk
fi

k 1 Yk /
.

If no scaling is dove, ryk = 1 for all k . If scaling is dove only at the first update, then ryk = 1 for k > 0. In oui
applications, H~+1 is an NM x Nm matrix . Thus, application of Eq . 8 requires the storage and multiplication o :
Nam, x Nm matrices . If the number of reservoir variables is very large, the form of the LBFGS, (limited memor3
BFGS) algorithm implemented by Nocedal (1980) becomes an extremely attractive alternative .

It is well known that the BFGS update formula of 8 can be rewritten a s

H~+i = 7kVT H~ 1Vk + p ksks~ ,

where pk = 1/y~ sk, and Tje = I - pky ksk . To motivate LBFGS, Nocedal rewrote Eq . 10 as

1
l -VT VT 1

. . .VT
pi- l ( i'kH0 1)Vk-p+l

. . .jjk-1Vk
Hk+

+ V~ . . . VT P+ 2 P k-p+isti-p+i s~-P+i Vi . . . Uk

+ V~P k_l S k_ 1 Sk-iVk

+ pksks~,

(10 ;

(11 ;

where p = min{L, k + 1} and the parameter L is an integer chosen by the user . Although we have used the samE
notation for the scaling parameter in Eqs . 11 and 10, the two equations are identical if and only if -yk = 1 for al:
k > 0 . Nocedal (1980) implemented Eq. 11 in a way that avoids storing any matrices except H~ 1 and he suggest :
using a diagonal matrix for H~ so the storage required is minimal . His algorithm has the following advantages .
(i) for k > 0, Hk 1 is not computed explicitly or stored; instead, the vector FIS lgk is formed directly and th(
search direction Sm k+l is set equal to the negative of this vector ; (ii) H~- lg k is calculated using only dot product :
of the vettors H(~ lgo, s i and yl, for 1 = k - 1, k - 2, . . .,max{0, k - L} . If L is greater than the total number o J
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iterations allowed, then LBFGS becomes equivalent to BFGS if ryk = 1 for k > 0 . Otherwise, LBFGS requires

less memory and less computational tim e per i te r ation than BFGS even if No cedal 's implementation is used for

th e BFGS algorithm . If L is too sma ll , howeve r , th e number of iterati on s required for conver gente is increased .
For the histo r y-matching problems we have cons idered to date, L = 30 has prove d to be a go od cho i ce . Fo r the

history-matching pr oblems cons ide r ed in thi s paper , larger va lnes of L resulted in a neglig ible improvemen t in

convergente pr oper t ies, but u s ing va lnes of L much sma ller than 20 resul ted in a not iceabl e degr adat i on in the rate
of convergente and resulted i n h igher va lnes of the ob j ect ive function at convergente .

Nocedal suggested choosing H~ 1 as a diagonal matrix. From Eq. 7, the obvious choice wou ld then be the

diagonal of CM, but w i tti this choice the smoothing effects of mul t ip licat ion by CM are lost and the rock property

fields are much rougher than would be expected based on the prior model for rese r vo ir variables . A better choi ce is
Ho 1 = CM, whi ch then requires storage of CM and mul t iplicat ion of vettor s by CM using sparse matrix techniques .

Line Search

Each iteration of the algorithm requires an approximate line search to determine the step size in the search
direction . The choice of the Tine search can affect both the convergente properties and the computational efficiency .
An exact live search would determine the step size ak so that a = ak minimizes Ó(mk + aámk+l) over a . Each
new approximation for ak requires at least one re-evaluation of the objective function which requires one forward
simulation run . As is typical in practice, we do not do an exact live search ; instead, we terminate the line search
when the Wolfe conditions are satisfied; see Fletcher (1987) . In our approximate Tine search, we (a) do one iteration
of the Newton-Raphson algorithm starting witti an initial guess equal to zero to obtain the approximation alk ; (b)

determine a quadratic q(a), such that q(0) = O(mk), q'(0) = V O(mk) and q(at) = O(m k +akdk ) and set the new

approximation of ak equal to the minimum of q(a) ; (c) successively cut the step size by a factor of 10 . We stop

the live search whenever the Wolfe conditons are satisfied . In the most cases, this occurs after step (a) and the

necessity to activate step (c) is extremely rare .

Computational Requirement s

Here we give a rough assessment of the computational efficiency of GN (Gauss-Newton), MLM (Modified Levenberg-
Marquardt), PCG (preconditioned conjugate gradient), BFGS and LBFGS . Our assessment of the computational
efficiency and memory requirements of the BFGS algorithm, and our implementation of the BFGS algorithm, are
based on the update formula given in Eq. 10. In the evaluation of computational efficiency, we count only the
number of adjoint solutions and the number of reservoir simulation runs required by each method . Moreover, we

count one adjoint solution over the total time interval of a simulation run as one equivalent simulation run, even
though in our implementation, an adjoint solution typically takes less than one half the time of a simulation run .
Moreover, we do not account for computational savings that may be obtained by solving the adjoint system witti
multiple right-hand Bides in cases where several sensitivity coefficients are calculated ; see Wu et al . (1999) . We also
assume that only one iteration of the approximate live search algorithm is done . We provide only a summary of
the results without details .

In GN and MLM, if the data are evenly distributed in the time domain, Nd/2 + 1 simulation runs are required
at each GN or MLM iteration . In BFGS, LBFGS and PCG, the total computational tost of implementing one
iteration is equivalent to 3 simulation runs . Thus, BFGS, LBFGS and PCG are (Nd/2 + 1)/3 times faster than
GN and MLM for each iteration . For example, if we have 1000 data, one iteration of GN or MLM will require 167
omes as much time as one iteration of BFGS, LBFGS and PCG .

Table 1 gives a rough estimate of the number of double precision real numbers used by each algorithm when
applied to minimize the objective function of Eq . 2 or Eq . 3 . (Recall that Nd is the number of production data, Nry,,,
is the number of model parameters, and L is the number of previous vettors used in the LBFGS algorithm .) Only
the memory used by the algorithm itself is counted, e .g ., the memory required to run the reservoir simulator is not
included. For conveniente, we use one memory unit to stand for the memory occupied by one double precision real
number. From the results of Table 1, we see that the full-memory version of BFGS uses the most memory which
is on the order of Nam ; conjugate gradient uses the least memory which is on the order of N„,, and Gauss-Newton
or Levenberg-Marquardt and limited memory BFGS have intermediate memory requirements . The memory used
by limited memory BFGS depends on the number of previous vettors (denoted by L in Table 1) used to construct
the update of the approximate inverse Hessian .

Scaling

For BFGS and LBFGS, scaling can have a significant effect on the rate of convergente . The self-scaling variable
metric (SSVM) method developed by Oren and Luenberger (1974) and Oren (1974) is motivated by the desire



to choose a ryk_1 so that the condition number of Rk = Hk~2Hk-1H~I2 is as close to one as possible . If Hk i
is identical to the inverse of the true Hessian, Hk, then this condition number is equal to one . For a quadratic
objective function, these authors provide theoretical conditions and a method for computing ryk that insure that
(i) Am;n < 1 < \maX where A min and \maX, respectively, denote the minimum and maximum eigenvalues of Rk ; and
(ii) the condition number of Rk+1 is less than or equal to the cond i tion number of Rk . A quasi-Newton method
which satisfies these two conditions is referred to as a self-scaling variable metric method . (Throughout, a quadratic
objective function refers to a quadratic which has a Hessian matrix that is real symmetrie positive definite .) For
stability considerations, it is also desirable that the condition number of k 1 not be too large, see Oren and
Spedicato (1976). In particular, if k 1 is a singular matrix, then for 1 > k, all ml will be restricted to a subspace
of N„,-dimensional Euclidean spaces see Murray (1972) . If the model which minimizes the objective function is not
in this subspace, the algorithm can not converge to this model . Oren and Spedicato (1976) proposed an "optimal"
conditioning of variable metric methods ; specifically, they provide a procedure for calculating ryk so that an upper
bound for the condition numbers of Flk+l and FIkH;~+1 is minimized . According to their results, one should actually
consider switching between different update formulas from the general Broyden family from iteration to iteration .
As for the results of Oren and Luenberger, these results assume that the quasi-Newton method is applied to a
quadratic object ive funct ion and that an exact Tine search is performed at each iteration .

From computational experiments, we have found that the general switching rule proposed by Oren and Spedicato
exhibits poorer convergence properties than are obtained by applying the BFGS update at every iteration and then
comput ing the opt imal ryk from the formu la they provide . In a sense, however, our preferred method for computing
ryk for LBFGS discussed later represents a modification of the switching rule proposed by Oren and Spedicato .

The principal objection to SSVM algorithms that has been raised is that the sequence Hk+l does not converge
to the true inverse Hessian in n iterations in the case where the objective function is an n-dimensional quadratic,
whereas variable metric methods from the Broyden family satisfy this quadratic termination property if ryk = 1 for
all k > 0. Motivated by this reasoning, Shanno and Phua (1978) suggested that one should only scale at the first
iteration and then do no further scaling .

In our work, we have found the optimal condition of Oren and Spedicato (1976) is robust and efficient if the
BFGS updating formula, Eq . 8, is applied at every iteration . For the BFGS method, their procedure for calculating
ryk reduces to

Sk
Yk

(12)~Yk =
Y k Hk 1 yk

we use this equation to compute the scaling factor for BFGS . Shanno and Phua (1978) suggested scaling only Hp 1
using ryo computed from Eq . 12 with k = 0 and then setting ryk = 1 for all k > 0 . This scheme is the one referred
to as the self-scaling variable metric method in Yang and Watson (1988) .

For the LBFGS algorithm, we have found a variant of the optimal switching rule given by Oren and Spedicato
(1976) which works well . Specifically, we compute

T-s~ Hosk
Tk = T

Sk Yk

s~ yk

&k Yk HO lyk ~

and then determine the scaling factor ryk by the following rule :

(13 )

(14 )

Tk if Tk < 1 . 0

ryk Uk- otherwise .
1 5

Again, we can scale only at the first iteration or scale at all iterations .
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In our application s, the prior c ovariance matrix i s u sed as the initial approximat i on to the inve r se Hessian ,

i .e ., H~-1 = CM . A somewhat simpler procedure, wh ich yields a less robust algorithm, is to set H~-1 equal to the

diagonal matrix D obta ined from Cm by sett ing all off diagonal e lements equal to zero . Even when H~ 1 = C,yr ,

we have found that i t is sati s facto ry to comput e Tk by

T~ - T 16Sk lsd ( )D
Sk Y k

instead of u s ing Cm1 in place of D -1 in Eq . 1 6 . Thi s method avoids so lving the matrix problem CMXk = sk fo r xk .

Figs . 1 (a) and (b) show the behavior of the objective function obtained by using BFGS and LBFGS, respect ive ly ,

w i th differ ent scaling scheures . The r esul ts pe r tain to histo ry matchin g WOR , GOR and pressure data for the 2D

three-phase flow example considered later in this paper . In both figures, the diamonds represent the case where

BFGS and LBFGS ve e re applied wi thout scaling . The plus si gns r e present the case where BFGS and LBFGS

veere scaled only at the first iterat ion. The circles represent the case where BFGS and LBFGS veere scaled at al l

iterations . The resul ts clearly demonstrate the advantages of scal ing; i .e ., convergente is obtained in significant ly

fewer iterat ions, and at convergente, a much lower value of the object ive funct ion is obtained. Also note that scaling

at a ll iterat i ons is superior to scaling only at the first i terat i on , especially for the LBFGS algorithm . The sca lin g

factor of Eq. 12 can not be appli ed with No ceda l 's limi ted memory al g ori thm because Hk 1, for k > 0 , is never

explicit ly computed or stored . When Eq. 1 2, with fik 1 rep laced by Ho 1 was applied to compute the scaling factor

for LBFGS, 74 iterat ions was required to obtain convergente and the va lue of the object ive funct ion at convergente

was equal to 1 8 . In the examples presented be low, scaling was done at all iterat ions when using the BFGS and

LBFGS algorithms .
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Fig . 1 : Comparison of scaling procedures .

3D single gas phase example

This example pertains to flow in a single-phase gas reservoir . Reservoir simulation was dove on a 20 x 20 x 4 grid .

Two Wells veere completed in this reservoir . Well 1 was shut in for two days and then was produced at the rate of

4 x 104 Mscf/day for two days . Well 2 produced at the rate of 3 .5 x 104 Mscf/day for the first two days and was

then shut in for the following two days . We used 22 measured data from each well as conditioning data . Thus, a

total of 44 data veere history matched . The reservoir variables are the gridblock porosities, horizontal and vertical

permeabilities and the well skin factors . The total number of reservoir variables is 4808 . Stochastic simulation

was done using the randomized maximum likelihood method . Ten realizations veere generated using five different

optimization algorithms: (i) MLM, (ii) preconditioned conjugate gradient (PCG) with CM as the preconditioner

(CM-PCG), (iii) PCG with the approximate inverse Hessian generated from the LBFGS equation used as the
preconditioner (LBFGS-PCG), (iv) BFGS and (v) LBFGS . Table 2 gives the number of iterations required to
obtain convergente and the value of the objective function at convergente for Bach minimization algorithm and for

each realization . Results obtained by averaging the results for each set of ten conditional realizations are given



in the last column of the table . From the results, we see that LBFGS and LBFGS-PCG behave similarly . T
convergente properties of both of these algorithms are superior to CM-PCG and BFGS ; i .e ., LBFGS and LBFG
PCG require fewer iterations to obtain convergente and yield a lower value of the objective function at convergen,
Based on results presented in the computational requirements section, on average, LBFGS and LBFGS-PCG
about 7 .7 times faster than MLM per iteration . As shown in Table 2, however, MLM requires about 2 .3 times fes
iterations to converge . Therefore, on average, LBFGS and LBFGS-PCG are about 3 .3 times faster than MLM 1
this particular example .

Tabl e 2 : Compari son between algorithms for a 3D sing le gas example .

Rl R2 R3 R4 R5 R6 R7 R8 R9 R10 Average

MLM
Obj. 38 30 21 33 43 28 27 38 40 34 33. 2

No. Iter. 8 14 TI T-8 13 13 21 8 14 10 12

CM-PCG Obj . 153 146 70 94 347 42 184 213 230 45 152
No. Iter. 12 20 11 23 19 64 5 17 19 23 21 . 3

BFGS
Obj. 59 52 35 41 70 41 39 53 54 87 53

No. Iter. 33 17 18 19 33 38 18 42 35 52 30. 5

LBFGS-PCG Obj. 44 51 29 38 57 33 36 47 54 36 42. 5
No. Iter. 23 17 23 31 23 38 21 35 20 30 26 . 1

LBFGS Obj . 43 41 31 38 55 33 35 54 54 36 42
No. Iter. 34 22 18 38 21 35 26 24 21 34 27 . 3

2D three-phase example

This synthetic example pertains to a two-dimensional, three-phase flow problem simulated on 15 x 15 x 1 gri
The gridblock porosities are fixed . The truth case, from which synthetic production data veere generated, is show
in Fig. 3 (a) . Note that there are three distinct zones with log-permeability uniform in each zone . This examp
has the advantage that the problem is small, so all methods require only modest computer resources . Moreove
because only three log-permeability values are involved, it is easy to visualize the quality of the MAP estimate
log-permeability. The prior covariance matrix is generated from an isotropic spherical variogram with range equ
to 6 gridblocks . Four producers are located near the four corners of the reservoir and one injector is located at ti
center . GOR, WOR and flowing bottomhole pressure (p,,, f) data Erom the four producers and p,ƒ data Erom ti
injector are used as observed conditioning data . The total number of data is 364 .

MLM, CM-PCG, LBFGS-PCG, BFGS, LBFGS with the diagonal of Cm as the initial Hessian inverse al
proximation (LBFGS-DCM) and LBFGS with the full matrix of CM as the initial Hessian inverse approximatic
(LBFGS-FCM) veere tested for this problem . Fig. 2 shows the behavior of the objective function . As shown, MLI
converged in 9 iterations to an estimate m such that O(m) = 13.3 . CM-PCG and LBFGS-PCG, respectivel
reduced the objective function Erom 906,670 to 28 .9 and 35.2 in 100 iterations ; at the hundredth iteration, CIV
PCG and LBFGS-PCG had not converged based on the stopping criteria . The BFGS algorithm converged in E
iterations to an estimate m such that O(m) = 16.2 ; LBFGS-DCM converged in 40 iterations to an estimate 9
such that O(m) = 13.7 and LBFGS-FCM converged in 33 iterations to an estimate m such that O(m) = 14 .1
Based on the discusion in the computational requirements section, for this example, LBFGS-FCM is expecte
to be roughly 61 omes faster than MLM per iteration . However, MLM required about 4 omes fewer iteratior
to converge . Therefore, LBFGS-FCM was expected to be about 16 omes faster than MLM overall based on tr
approximate results of the computational requirements section . Table 3 shows the real CPU time used by th
different algorithms . In terms of the real CPU time, optimization with the LBFGS-FCM algorithm was about 1
omes (aster than optimization with MLM . Fig. 3 (b) shows the log-permeability field obtained by LBFGS-FCN
We can see this model is very close to the log-permeability field obtained by the MLM method and is similar t
the true model . The log-permeability field obtained with the LBFGS-DCM is not shown here but is much rough(
than those shown because the smoothing effect of multiplication by Cm is lost when we use only the diagonal
C,1,1 as the initial approximate inverse Hessian .

Also note that in this case, both preconditioned nonlinear conjugate gradient methods perform relatively poon ;
and unlike in the gas reservoir example, generating an approximate inverse Hessian using LBFGS formulas gives
worse preconditioning matrix than simply using Cm as the preconditioner . We should note, that when we appl
the LBFGS formula in conjunction with the preconditioned CG algorithm, the yk's and g k 's used in the formul
are computed Erom the CG equations and are hence different than those that would be obtained with the actm
LBFGS method .

8th European Conference on the Mathematics of Oil Recovery - Freiberg, Germany, 3-6 September 2002
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Fig . 2 : Behavior of the objective function .

Table 3 : Comparison of the CPU time used by diffe rent minimizat ion algori thms
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3D three-phase examp le

In this example . a 3D three-phase flow prohlem on a 40 x 40 x 6 grid is considered . The truc log-permeability field

is an unconditional realization generated bv Gaussian co-simulation. The top layer of t he true log-permeab ili ty

field is shown in Fig . 4 (c) . The poros ity field i s fixed. Six produ ce r s and four wa ter injection W ells are completed

in the rese r vo i r . We l lóore pressure (p„ƒ), GOR and WOR data from the producers a nd p„ƒ data from the injec tors

ar e used as conditioning data ; the to ta l numbe r o f da t a i s 880 . Fig . 4 (a) show s the top layer of the uncondit ional

realizatio n of the model whi ch was used as the ini tial guess in the history-matching process . Fig . 4 ( b ) shows
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the corr espondin g laver of the model obta ined bv history matching the production data . Optimi zation was dc
wi th the scale d LBFGS algori thm . The objec tive function was reduced fro ns a init ial value o f 3 x 10 to 675 in
iterations . Note that the cond itional realization obtained bv h istory ma t c hing captures the main features of 1
true model .
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F ig . 4 : Uncond itionaf , condit.i onal and t ru e realizat i ons of the log-permeability field i n the top lager .

Figs . 5 ( a) through (c) show the data match for the pressu re . GOR and WOR from one p roduce r . In a ll th(
figures, diamond s represent the da ta ob tained from the unconditional rea liza tion , i .e ., the initial mod e l . cir c]
r epresent the obser ved data and the plus sign s represent the data obtained from the model wh i ch was obtain
bv history ma tching all o bserved data . Note that good match es veere obtained . Matches of similar gual ity we
obtained at all welk. I t is important to note that the size of the problem p rechided the appl ication of MLM ai
the standard BFGS algorithm with the personal compu ter used for the study.
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Fig . 5 : Data matches .

Conclusions

We compared the convesgence performance of a set of gradient-based nonlinear optinvzation algorithms ineludii
modified Levenberg-Marquasdt, preconditioned conjugate gradient, BFGS and limited memory BFGS on a set
bistory matching problems . The implementation of BFGS used was based on explicitly computing and storing tl
approximate inverse Hessian at each iteration ; although camputationally inefficient, this implementation allows oz
to apply all scaling procedures that have been suggested in the literature . Our results indicate that for large sca
bistory matching problems, the limited memory BFGS algorithm requires significantly lees time and lees memo
than the modified Levenberg-Marquardt and BFGS algorithms, but yields results of comparable quality based c

Sth European Conference on the Mathernatics of Oil Recovery - F~reiberg, Germany, 3-6 September 2002
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the value of the objective function obtained at convergente, and the model obtained at convergente . Scaling has a
significant effect on the performance of the LBFGS and BFGS algorithms . The scaling factors used here result in
significant improvement in the convergente properties of the algorithm as compared to the no scaling case . For the
examples considered here, our implementations of preconditioned conjugate gradient algorithms veere less robust
than the scaled BFGS and LBFGS algorithms .
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