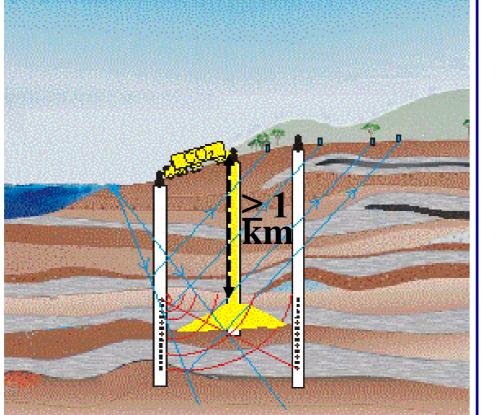
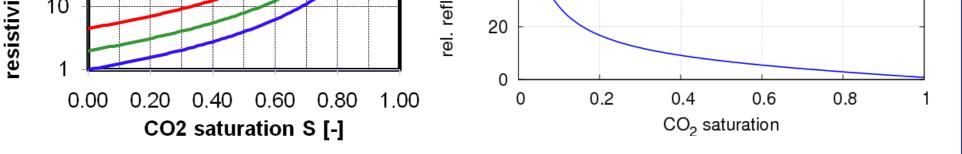


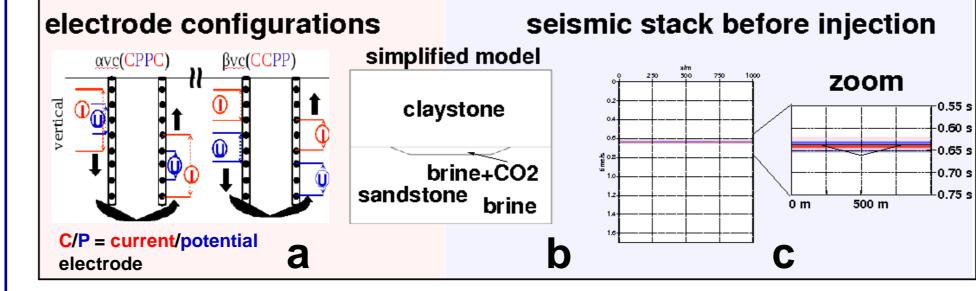
Combined seismic and geoelectric modeling of CO₂ plumes in deep saline reservoirs (example Wagrien, North German Basin)

Said A. al-Hagrey, Matthias Strahser & Wolfgang Rabbel

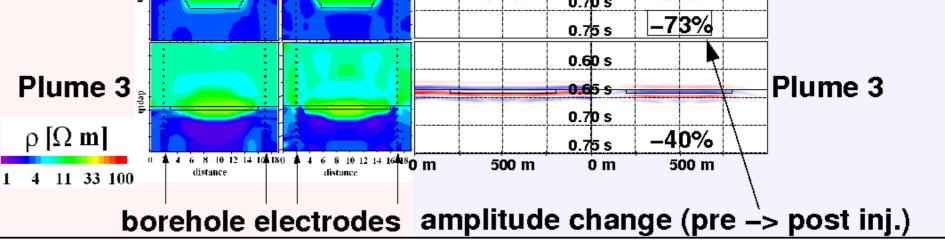

Institute of Geosciences, University of Kiel, Email: sattia@geophysik.uni-kiel.de, mstrahser@geophysik.uni-kiel.de, rabbel@geophysik.uni-kiel.de

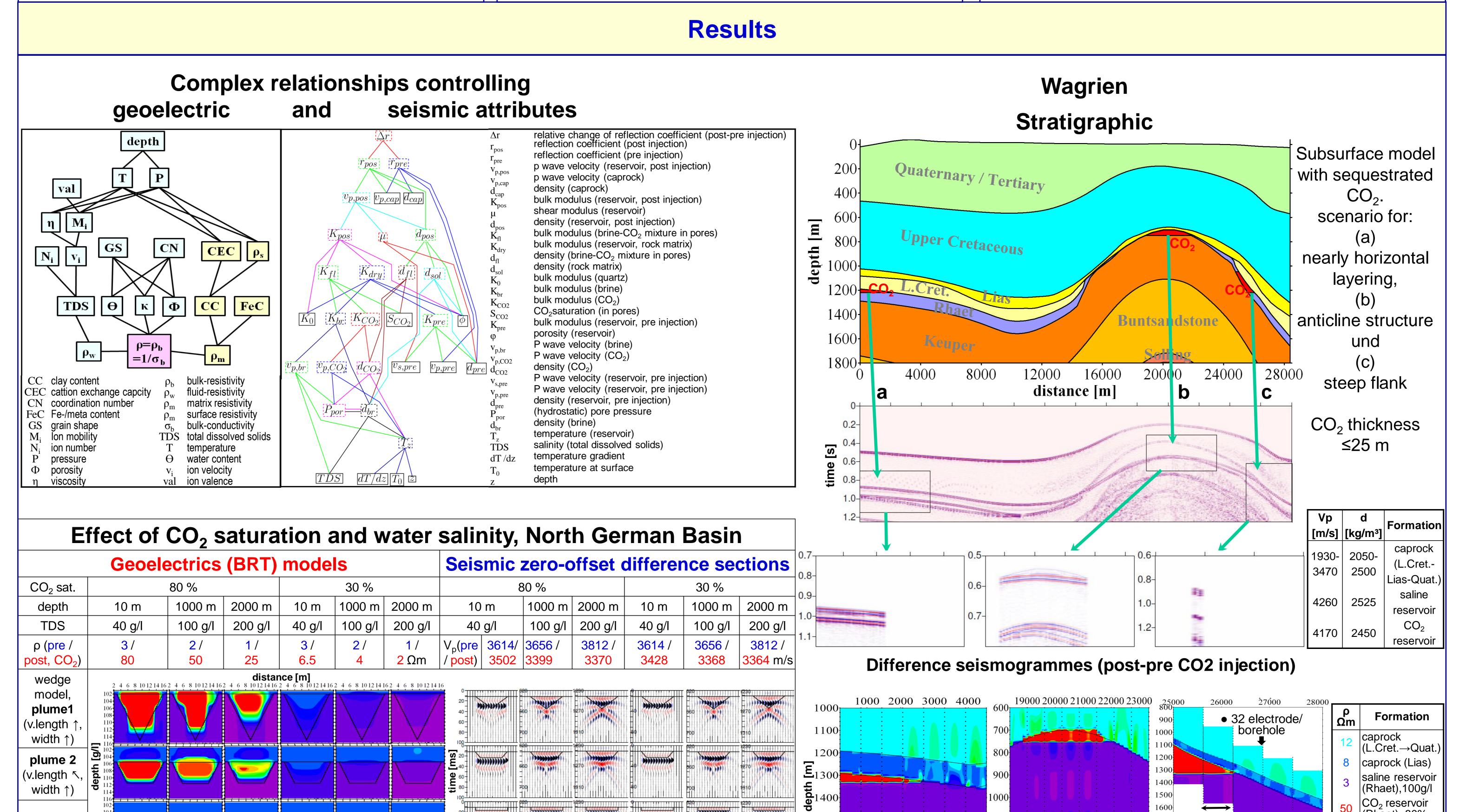

Objectives / approach	Introduction	Study of basic parameters
Objectives	Geoelectrics Effect of CO ₂ on Seismics	electrode config- urations αvcs opt. after inject. difference (post-pre inj.)
 Analysing changes in seismic and electrical rock properties due to CO₂ injections and migrations based on petro-physico-chemical parameters and rock models, and CO₂ migration scenarios in subsurface structures Investigating sensitivity/resolution of reflection seismics and electrical 	1000 50 g/l 30 g/l 100 g/l 100g/l 100 g/l 150 g/l 1000 200 g/l 60 100 0 0	Plume 1 g
2) Investigating sensitivity/resolution of reflection seismics and electrical resistivity tomography (ERT) in boreholes (BRT) for monitoring development		Plume 2

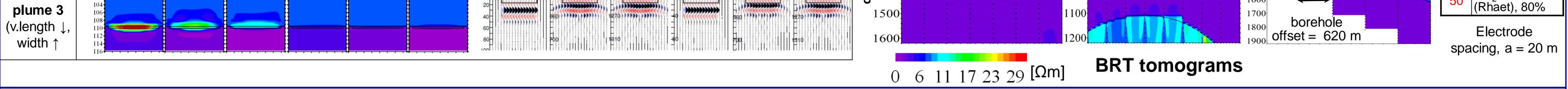
- of an artificial CO₂ reservoir
- Developing a geophysical monitoring strategy


Approach

- Seismic time-lapse measurements at large time intervals (years?)
- Monitoring using BRT to estimate changes in intrinsic physicochemical property changes of reservoir/ caprock and CO₂ plume with a priori seismic and log data in the constrained Inversion
- Possibly deriving bulk CO₂ amount * and risk from determining CO₂ saturation (BRT) and the plume volume (seismic)


 \Rightarrow BRT and seismics are suitable for monitoring of injected CO₂ in saline formations


a) avcs and β vcs (v=vertical, c=circulating, s=symmetrical) are some of the possible applied electrode configurations.


b) Simplified model used in electric and seismic modeling

c) Seismic model before CO₂ injection. Only the boundary between caprock and hostrock causes a reflection. The zoom shows the location of the CO_2 reservoir filled with brine only.

- Electric (left) and seismic (right) modeling of three different plume forms at 80% CO₂ saturation in the pore water and at 1000 m depth.
- \bigstar Two electrode configurations: α vcs and optimized (opt) were used. Opt includes the dataset with the highest resolution of all possible comprehensive configurations, thus increasing spatial and temporal resolution.
- Seismic modeling: seismic (zero offset) section after CO₂ injection (left of the two columns) and difference between the pre- and post-injection sections (right). The maximum decrease of the reflection amplitude is indicated.
- ✤ The three plume forms are resolved but with smearing effects and blurred edges. Plume 3 is most problematic of them (limited thickness).
- ✤ 30% CO₂ saturation (not shown here) causes significantly weaker geoelectric contrasts. Seismic results: only minor changes.

Summary and conclusion

- Continuing fundamental studies of diverse basic parmeters related to data acquisition, inversion, geological/petrophysical setting and CO₂ plumes affecting seismic and BRT modeling
- Applications on simple schematic models and also on realistic subsurface scenarios (Wagrien)
- Developing a new geoelectric algorithm to generate an optimised electrode array for any survey
- ✤ Variations of depth (0-3km), temperature (30°C/km),

pressure, (<70 MPa), petrophysics (porosity =0.2-0.25, TDS=100 g/l per 1km depth) and CO₂ plume parameters (dimension= $0.5 \Rightarrow 10a$, saturation=30-80%)

- Strong effects with increasing brine salinity, plume thickness, porosity and CO₂ saturation
- ✤ Increasing depth decreases the frequency of seismic signals and thus resolution
- Resolution decreases with decreasing CO₂ dimensions and saturations

♦ Wagrien: CO₂ plume with thickness $\leq 20m$ (a=20m) is well mapped in BRT at 1 km depth and for TDS=100 g/I ➡ seismics: problematic due to long wavelength ✤ BRT: a priori information from seismics/logs (interfaces) in constrained inversion
more reliable tomograms, better derivation of intrinsic properties of geologic formations and CO₂ plumes. Further improvements are anticipated for monitoring results since the resistivity distribution is partly known from previous time-lapses

Bundesministerium für Bildung und Forschung

