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   An element free Galerkin method which does not require connectivity between elements and nodes is 
examined its efficiency for rock experiment. In this study, uni-axial tensile and compressive tests and 
collapse of cavity are examined. In this process, the rock specimen is assumed to heterogeneous assigned 
by Weibull distribution. Acoustic Emission which is microscopic behavior of the specimen agrees with 
laboratory tests, and failure mode of the specimen also agrees with general laboratory test results. 
 
 

1.  INTRODUCTION 
 

Recently, interest to underground spaces is 
increasing because of depletion of underground 
natural resources, geological disposal of radioactive 
waste and increase of earthquake hazards. Herewith, 
it becomes essential to understand underground rock 
properties. One of the most important rock 
properties is rock failure characteristics. The 
macroscopic failure of a rock is dominated by 
microscopic fractures generated prior to a 
macroscopic failure. Consequently, understanding 
the mechanism of the microscopic fractures is 
essential to figure out mechanical and engineering 
properties of a rock. 

To understand rock failure, the statistical 
continuum damage model comes into being applied 
to rock mechanics problems in order to represent the 
behavior of a rock comprehensively. This statistical 
model has been solved by the Finite Difference 
Method (FDM) (Fang and Harrison,2002) and the 
Finite Element Method (FEM) (Tang et al.,2000). 
Here, we attempt to apply the mesh-free method 
called EFGM(Element Free Galerkin Method) 
(Belytschko et al.,1994) to the statistical continuum 
model. The main advantage of EFGM is that the 
connectivity between nodes and elements is not 
required unlike FEM. There are some other 
advantages in EFGM, e.g. the stress field is obtained 
continuously by choosing the weighting function 
appropriately, large deformation problems can be 
calculated, and so on. However, EFGM is still under 
development toward the practical use of engineering 
fields. It is, therefore, significant to examine the 

applicability of this mesh-free method in many 
engineering fields. We apply this method to 
numerical simulations of the uni-axial tensile and 
compressive tests and collapse of cavity test in order 
to examine the applicability of EFGM to rock 
mechanics and rock engineering. 
 
 
2. EFGM 
 

   Element free Galerkin method is proposed by 
Belytschko in 1994. Element free Galerkin method 
is based on the concept of moving least-square 
approximation. Interpolating function uh(x) is 
expressed using moving least-square approximation 
as follows, 

 
uh(x)=pT(x)a(x).              (1) 

 
where pT(x) is base function and a(x) is a vector of 
unknown parameters depending on coordinate 
system. A vector a(x) is determined by minimizing 
the discrete weighted square difference between 
approximated value and real value.  
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where wI(x) is weight function. Substituting a(x) 
determined by equation (2) into equation (1), 
interpolating function can be obtained, 
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where the vector )(xIφ  is the shape function. 
The weak form of the equilibrium is given as 

follows; 
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where σ  is the stress tensor, ε  is the strain tensor, 
u is the displacement vector and α  is penalty 
coefficient. Penalty coefficient is used in penalty 
method in order to satisfy the essential boundary 
condition.  

In this study, Lagrangian kernel expressed in 
terms of material coordinates is used as follows, 
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For Lagrangian kernel, the neighborhood 

particles of influence do not change during the 
course of the simulation. Another kernel called 
Eulerian kernel is defined in terms of spatial 
coordinate. So the shape function in Eulerrian kernel 
must be calculated from step to step, however, that 
of Lagrangian kernel is calculated only at once in 
first step.  
 
 
3. PARAMETERS OF THE SPECIMEN 
 

Young’s modulus is 30GPa, poisson’s ratio is 
0.25, cohesion is 20MPa, internal friction angle is 35 
degrees. Failure criterion used in this study is 
Mohr-Coulomb criterion with tensile cutoff.  
Cohesion and tensile strength are distributed in order 
to express heterogeneity following Weibull 
distribution. Probability density function of Weibull 
distribution is expressed as follows; 

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

− mm

x
x

x
x

x
mxf

0

1

00

exp)(        (6) 

 
where m is the shape parameter and  is scale 
parameter. Fig.1 shows the probability density 
function of Weibull distribution changing various 
shape parameters. It can be seen that the probability 
density function is focused around unity with 
increase in large number of shape parameter.  

0x

In this study, failure criterion is assessed at each 
integration point. In addition, the failure is brittle 

failure with no plastic range. When brittle failure is 
occurred in the specimen, the stress is redistributed 
around neighbor integration point. Then the 
neighbor integration points are satisfied failure 
criterion, the stresses are calculated without 
increasing further displacement.  

 
(a) Microscopic failure points are generated internal 

the specimen. 

 
(b) The localization of microscopic failure is 

occurred. 

 
(c) Macroscopic failure plane is formed. 
Fig.1 The developing process of microscopic failure. 

 
 
4. SIMULATION RESULTS 
 
(1) Uni-axial tensile test 

Fig.1 shows the failure patterns of the uniaxial 
tensile test with the shape parameter of 1.5. The 
white box represents the specimen and the black 
points inside of the specimen represent the failure 
points. The analysis nodes are set in a reticular 
pattern and the square background cells are 



 

 

collocated so that their corners coincide with the 
nodal locations. The size of the specimen is 5×10cm, 
and the applied external displacement is 
0.0001mm/step constantly. In Fig.1(a), the 
microscopic failures are generated in the whole 
specimen. By successive loading, the microscopic 
failures are localized at one point in the specimen 
indicated by the arrow in Fig.1(b), and this 
localization develops and propagates coalescing 
with neighboring microscopic failures to create a 
macroscopic failure (Fig.3(c)). This developing 
process and its direction perpendicular to the loading 
direction in this simulation correspond with those in 
the laboratory test. 

Fig.2 shows the stress-strain curves and Fig.3 
shows the AE counts-strain curves in the uni-axial 
tensile tests. It can be seen that the peak strength of 
the uni-axial tensile tests increases with an increase 
in the shape parameter. It can be an explanation for 
this result that a specimen with a large shape 
parameter is more homogeneous than that with a 
small shape parameter. This is supported by AE 
events shown in Fig.3, i.e. AE counts-strain curves 
for the large shape parameters show more drastic 
increases of AE counts. Furthermore the stress-strain 
curve with the larger shape parameter has steeper 
rise than that with the smaller shape parameter. This 
is considered that the stiffness of the specimen 
decreases with an increase in microscopic failures 

because of crack interaction. A number of simulation 
results with different input values of random number 
show the similar pattern described above. 

 
(a) Microscopic failure points are generated internal 

the specimen. 

 
(b) The localization of microscopic failure is 

occurred. 

 
(c) Macroscopic failure plane is formed. 

Fig.4 The developing process of microscopic failure. 
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Fig.2 Stress-strain curves of uniaxial tensile test. 

 

0

2000

4000

6000

8000

10000

0 0.002 0.004 0.006 0.008 0.01

Axial strain (%)

(counts)

m=1.5

m=2

m=3

m=5

Fig.3 AE counts-strain curves of uniaxial tensile test.

 
(2) Uni-axial compressive test 

Uni-axial compressive tests are carried out in 
order to investigate mechanical and engineering 
properties of heterogeneous specimen. The size of 
the specimen is 4× 10cm, and applied external 
displacement is 0.001mm/step constantly. Fig.4 
shows failure mode of the specimen after uni-axial 
compressive test with shape parameter of 2.5. In 
Fig.4, white points denote failure points in shear 
mode, and red one denote failure points in tensile 
mode. In many laboratory tests, the specimen 
ruptures along loading direction generally. In this 
study, the specimen failures in tensile criterion from 



 

 

a microscopic viewpoint. This shows the process of 
rock failure is represented clearly. 
  
(3) Collapse of cavity 

Next, the evolution of fracture around a cavity is 
examined through a numerical simulation. 
Confining pressure is applied at side wall of the 
specimen. Mechanical parameters of the specimen 
are similar to uni-axial tensile and compressive tests. 
Macroscopic failure pattern is shown in Fig.5. In 
Fig.5(a), microscopic failures occur at side wall of 
the circular hole. In fig.5(b), remote failures appear 
all around the circular hole, and finally, a 
macroscopic failure plane across the specimen is 
formed. This failure process is very similar to 
laboratory test result (Fakhimi et al.,2002). 
 
 

 

 
(a) Microscopic failure points are generated internal 

the specimen. 

 
(b) The localization of microscopic failure is 

occurred. 

 
(c) Macroscopic failure plane is formed. 

Fig.5 The developing process of microscopic failure. 

5. CONCLUSIONS 
 
In this study, we investigate the applicability of 
EFGM to rock mechanics by conducting numerical 
experiments. Our simulation results in this paper 
show the followings. 
 
1. The sequential behavior of rock failure in the 

uni-axial tensile and compressive tests is 
represented by our numerical simulation method 
which adopts a statistical continuum damage 
model. 

2. The evolution of failure around a cavity is 
similar to laboratory test result. This shows the 
applicability of EFGM under a general stress 
condition. 

 
The greatest characteristic of EFGM is that the 

shape function is determined by a moving 
least-squares method without using an element 
structure. However, it is easy to incorporate this 
concept into existing FEM codes because EFGM is 
based on Galerkin method same as FEM. This 
suggests that a number of contributions have been 
made in the past by means of FEM can be also 
utilized in future studies by means of EFGM which 
is brought to the attention recently. 
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