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In this paper, we apply the CIP (Cubic Interpolated Profile) method to the simulation of elastic waves
as a highly accurate and stable algorithm to solve first-order wave equations. The key idea of the CIP
is that not only the physical value itself but also its first spatial derivative obeys the same equations.
Using this property the solution is interpolated by cubic polynomials and interpolation coefficients can
be evaluated arithmetically. We implemented this idea to the elastic wave simulation by derivation
of the first-order wave equations from the basic equations of motion. The derived equations can
be interpreted as the combined first-order wave equations for each mode of wave. Then, we define
boundary conditions by using the merit of one-side propagation; free surface, solid-fluid boundary,
irregular topography. From simulation study and the stability evaluation, we recognize the method of
characteristics with the CIP is a very powerful simulation technique for the elastic wave propagation.
Numerical dispersion is negligible, requiring about half the number of grid cells per wavelength than
other solvers. This allows accurate, high-frequency, full-wavefield simulation in models with highly
variable, random elastic contrasts with fluid-solid mixed media and complex topographic media.

1. INTRODUCTION

In the simulation of elastic waves, the FDM
(Finite Difference Method) has been widely adopted
because of its simple implementation. However,
the numerical dispersion and computational stability
are required to be considered carefully. There are
some known expanded methods to reduce numerical
dispersion, for example; FDM with staggered grids
(Vireux, 1986) and the high order differential
operator (Levander, 1988).

The computation scheme of the CIP method
was proposed by Yabe and Aoki (1991) and had
been used in the computational fluid dynamics and
plasmas phenomena simulations (Kudoh, 1998; Yabe
et al., 2001). We applied this method to the
simulation of elastic wave (Shiraishi and Matsuoka,
2005). This method is based on a concept that
both the physical property and the spatial derivatives
are propagated along the characteristic curves in
calculating a hyperbolic differential equation.

In this paper, we describe the derivation of the
first-order wave equations for elastic waves, and
establish some geophysical boundary conditions;
free surface, fluid-solid interface, and irregular
topographic boundary. We also show some
numerical simulation results in topographic media
and randomly inhomogeneous media. We will

implement this simulation method to solve the
realistic geophysical problems accurately from the
macro-scale to the micro-scale.

2. DERIVATION OF FIRST-ORDER WAVE
EQUATION FOR ELASTIC WAVES

In applying the method of characteristics
to multi-dimensional elastic wave modeling, we
translate basic formulas in elastic medium into
combined first-order wave equation. The equation of
continuity and the equation of motion in an elastic
medium between stressτ and particle velocityv are
expressed as
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In these equations,λ, µ are Lame’s elastic moduli,
andρ is density. We can rewrite these equations in a
matrix form with matricesA, B, andC, which are
9× 9 matrices including Lame’s moduli and density,
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where,
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In translation of formulas, we adopt direction
splitting (Takewaki and Yabe, 1987) and
diagonalization of matrices in each direction. At first,
we separate equation (3) in three directions.Then,
we diagonalize the matricesA, B, andC. Here we
show the derivation of the first-order wave equations
in xi direction from the equation;
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The matrixA can be transformed with a diagonal
matrixM,

A = LML−1. (5)

By substituting this relation into equation (4), we can
finally an obtain matrix equation,
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This matrix formula includes the following nine
equations;
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Here, Ip =
√
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√

ρµ =
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λ/(λ + 2µ)=1−2V 2
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normal stresses. P wave velocity and S wave velocity
areVp=
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Equations (7) and (8) show P wave propagation
in forward direction and backward direction
respectively, and equations (9) to (12) represent S
wave propagations in each directions of two different

modes. We can interpret equation (9) and (10)
describe SV wave propagation, and equation (11)
and (12) describe SH wave propagation. Equations
(13) to (15) show relationships between stress
components of different directions. In 3D case, we
have totally9×3=27 equations.

3. CIP METHOD

Wave propagation in an alternative way is
expressed by an equation
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This first-order wave equation means that wave
packetf propagate along the curvedx/dt = u. This
curve is called a characteristic curve and equation
(16) is interpreted as a first-order wave equation for
forward wave propagation. Although this equation
has a simple form, it had been difficult to calculate
numerically with high stability and less numerical
dispersion. The CIP method overcomes this problem
by solving the equation with a spatial derivative.

If we assume that propagation velocityu is
constant, we obtain a same equation forg which is
the spatial derivative off by differentiating equation
(16) with spatial variablex,

∂g

∂t
+ u

∂g

∂x
= 0, g =

∂f

∂x
. (17)

These equations 16 and 17 show that both the
physical property and the spatial derivatives are
propagate along the same characteristic curves. The
CIP method is based on this concept in calculating
a hyperbolic differential equation. Fig.1 shows
conceptual diagrams of the CIP method. Solid line
is initial profile and dashed line is an exact solution
after propagation (Fig.1(a)). When the solutions after
one time step propagation are interpolated linearly,
numerical diffusion appears (Fig.1(b)). In the CIP
method, the spatial derivatives also propagate and the
profile inside a grid cell is retrieved (Fig.1(c)).

If two values of physical propertyf and the
spatial derivativeg are given at two grid points,xi

and xi+1, the profile between these points can be
interpolated by a cubic polynomial,

Fi (x) = ai (x− xi)
3+bi (x− xi)

2+ci (x− xi)+di.
(18)

In addition, there are the following four constraints



onf andg at the grid points

Fi (xi) = fi = di, (19)
dFi (xi)

dx
= gi = ci, (20)

Fi (xi−1) = fi−1

= −ai∆x3 + bi∆x2 − ci∆x + di, (21)
dFi (xi−1)

dx
= gi−1

= 3ai∆x2 − 2bi∆x + ci, (22)

∆x = xi − xi−1.

From above equations, the profiles off andg at the
n + 1th step are obtained by shifting the previous
profiles byui∆t,
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The coefficients in equations (23) and (24),ai andbi,
are obtained by evaluating the above constraints,
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Here,D = −∆x, iup = i − 1 for u ≥ 0 (forward
propagation) andD = ∆x, iup = i + 1 for u < 0
(backward propagation).

We analyze stability and dispersion features of
the CIP scheme by von Neumann’s method.Fig.2
shows the gain and phase of amplification factor G(k)
obtained by substitutingfn

i = G exp(−jkj∆x)
(j =

√−1) to the first-order wave equation (equation
(16)) about five difference schemes; CIP scheme,
first order up-wind scheme (UPW), Lax-Wendroff
scheme (LXW), second order central difference
scheme (FDC), and Crank-Nicholson scheme (C-N).

4. ELASTIC WAVE SIMULATION BY CIP
METHOD

In the modeling of elastic waves based on the
equations (7) to (12) are calculated by the CIP
scheme and equations (13) to (14) are calculated by
the central difference approximation. In the CIP
method, we need to evaluate the equations for the
spatial derivatives, too.

Figure 1. Conceptual diagrams of the CIP method.

Figure 2. The gain (left) and the phase curves (right)
at the first step with analytical spatial derivatives
at u∆t/∆x = 0.25. CIP scheme (CIP), up-wind
scheme (UPW), Lax-Wendroff scheme (LXW),
central difference scheme (FDC), Crank-Nicholson
scheme (C-N), and exact solution(EXC).

We show an example of calculation of the
equations (7) and (8). The forward propagation of
+τii + Ipvi and the backward propagation of−τii +
Ipvi are calculated from the equation (7) and (8)
respectively;
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Here superscripts+ and − mean the forward and
the backward propagation. Then we calculate the
wavefield at then + 1 th step by linear summation
of them;
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The stressτii and the particle velocityvi are related
by the impedanceIp. In actual calculation, we
calculate both forward and backward propagation for
each variable. In addition, their spatial derivatives
are also calculated by the same relationship as above
equations,
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Here, we defined∂i as a spatial derivative∂/∂xi.

The total wavefield in a multi-dimensional media
is calculated by the equations in all directions in



Figure 3. Three dimensional elastic wave
propagation.

order based on the concept on the direction splitting.
Fig.3 shows an numerical example of elastic wave
in a three dimensional homogeneous media when the
particle velocity inx direction is applied as a source
at the center. As shown in the snapshots, P wave and
S wave propagate appropriately.

5. BOUNDARY CONDITIONS

For the elastic wave simulation in geophysics,
we need to set some boundary conditions; free
surface (e.g. earth surface), fluid-solid interface
(e.g. sea floor), transparent / absorbing boundary
(e.g. semi-infinite medium), etc. The physical
boundary conditions are described by physical values
themselves{τij , vi} and their spatial derivatives
{∂τij/∂xk, ∂vi/∂xj}. In the wave simulation based
on the method of characteristics with the CIP
method, we can satisfy the conditions theoretically,
since we calculate the wave propagation based on the
feature of solving first-order equation and calculation
both physical values and their spatial derivatives. In
calculation at then+1 th time step wavefield by
equations (30) to equation (33) at the boundaries,
we consider the sign of the propagated wavefield and
spatial derivatives.

Here we show four kinds of boundary conditions;
free surface, fluid-solid interface, and transparent
/ absorbing boundary. To simplify the problems,
we treat two dimensional case and we assume the
boundary is located atz=j∆z.

(1) Free surface

The free surface is the most important boundary

Figure 4. Free surface boundary condition and
imaginary wave field.

for elastic waves. The conditions are expressed as

τzz = 0, τzx = 0, (34)
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We calculate stress and particle velocity at the
free surface using underground wave and mirrored
imaginary wave above the surface with opposite
or same sign respectively (seeFig.4). It is also
important to consider the sign of both the physical
values and the spatial derivatives. From the
calculation process at then + 1 th wave field
represented in equations (30) to (33), we need
to prepare the forward and backward propagated
wavefield. To satisfy the conditions in equations (34)
and (35), we set the forward propagated wavefield
using backward propagated wavefield as follows; for
the stress,
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zx = −τ−zx, (36)
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(2) Fluid-solid interface

The fluid-solid interface is also a main boundary
for the elastic wave. The sea bottom is a
representative boundary in the local seismology
and the seismic exploration, and the interface
between pore fluid and rock matrix also important in
micro-scale geophysics. At the fluid-solid interface,
we need to consider continuities about normal stress
and particle velocity inz direction,

τzx = 0,
∂τzz

∂z
= 0,

∂vz

∂z
= 0. (40)



Figure 5. Solutions of Lamb’s problem by CIP
method (solid line) and reflectivity method (dashed
line). (a) is horizontal component, and (b) is vertical
component atx = 4, 000m.

To satisfy these conditions, we applied a same
technique for settings of forward and backward
wavefields as shown above for the free surface.

(3) Transparent / absorbing boundary

The CIP method naturally satisfies transparent
boundary condition in an orthogonal direction to the
boundary at each edge, because it basically solves
first-order wave equations throughout. However,
oblique incident waves at edges are not disappear
perfectly. Especially, S wave with high incident
angle reflect/refract at the edge. We recommend
to combine the absorbing boundary by amplitude
damping (e.g. Cerjan, 1985) with the transparent
boundary based on the first-order wave propagation.

6. NUMERICAL EXAMPLES

(1) Lamb’s problem

In order to evaluate the boundary condition
for the free surface, we attempt to solve Lamb’s
problem. We applied a vertical point force (10Hz
Ricker wavelet) on a homogeneous half-space (Vp =
4, 000m/s, Vs = 2, 309m/s, ρ = 2, 500kg/m3). Grid
spacing is∆x = ∆z = 10m with NX×NZ =
501×251 grids, and time interval for calculation is
∆t=0.001s. Fig.5 shows seismograms atx=4, 000m
and comparison with the result from the reflectivity
method. We can appropriately calculate the wave
propagation in the near surface including Rayleigh
wave.

Figure 6. Snapshots ofτzz component propagating
in a fluid-solid interface model.

(2) Irregular topographic media

The second model has the sinusoidal wavy
variation at the seafloor.We assumed the upper layer
as sea,Vp = 1, 500m/s, Vs = 0m/s, ρ = 1, 030
kg/m3, and the lower layer as Poisson solid,Vp =
3, 000m/s,Vs = 1, 732m/s,ρ = 2, 500kg/m3. Grid
spacing is∆x = ∆z = 5m with NX×NZ =
501×251 grids, and time interval is∆t = 0.001s.
We applied pressure source (30Hz Ricker wavelet) at
x = 1, 250m andz = 10m. Fig.6 shows a snapshots
of τzz component (pressure in the sea). The incident
P wave reflected, and transmitted wave and converted
S wave are occurred at the seafloor.

Our boundary conditions work appropriately not
only at flat boundaries but also curved boundaries in
both the free surface and the fluid-solid interface. We
realized the boundary conditions to deal with realistic
geophysical problems.

(3) Random media

The final example deal with the randomly
inhomogeneous medium. The P wave model shown
in Fig.7 is generated by random number and moving
average, and S wave velocity is defined byVp/Vs =√

3 and densityρ = 2.5 is constant. The model
has relatively high velocity contrasts. Grid spacing
is ∆x = ∆z = 10m with NX×NZ = 256×256
grids, and time interval is∆t = 0.001s. The
particle velocity (vertical, 30Hz Ricker wavelet) is
applied at the center of the model as a source.Fig.8
shows snapshots of P and S wave propagation at
t = 0.4s by the CIP method and by the fourth order
finite difference method with staggered grid (FDSG).
Although both snapshots represent similar scattering
wavefields in the random medium, the FDSG shows
numerical dispersion after S wave propagation. This
is caused by the shorter wave length of S wave than



Figure 7. Distribution of P wave velocity; (left) x-y
plot, and (right) cross section at line AA’.

Figure 8. Snapshots P wave and S wave component
calculated by divergence and curl att = 0.4s. (a)
and (b) the CIP method, (c) and (d) Finite-Difference
Method with Staggered-Grids.

that of P wave. These results shows that the CIP
method can simulate the wave propagation with less
numerical dispersion.

7. CONCLUSIONS

We applied the CIP scheme to the wave modeling
based on the method of characteristics. The
first-order wave equations for the elastic waves are
derived from the basic equations of motion. For
the realistic wave modeling, we established some
geophysical boundary conditions for this method.
Since the CIP method calculate the propagations of
both physical values and their spatial derivatives, we
can simulate elastic wave propagation with stability
and less numerical dispersion and we can satisfy

the boundary conditions theoretically. We conclude
the CIP scheme is a very powerful technique to
deal with geophysical problems such as accurate,
high-frequency, full-wavefield simulation in models
with highly variable, random elastic contrasts with
fluid-solid mixed media and complex topographic
media.
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