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ABSTRACT 

Wave equation method is one of the 白ndamental methods for seismic modeling and imaging. In 出IS

paper a meshless numerical method -the Element-Free Method (EFM) was applied to solve seismic 

wave equation and handle modeling and imaging problems. The 也eory of EFM consisted of two par臼

一白e Moving Least Squa問s (MLS) criterion and the variational princip1e, in con廿'ast with the 

Lagrange interpo1ation and the variational princip1e for the theory ofthe Finite E1ement Method (FEM) 

In EFM, it was n回目sary to ca1cu1ate the Gauss quadrature on each Gauss point. On1y the numbered 

nodes near to the Gauss point needed to be considered for the quadra回目 Thesenodes were determined 

by the so-caUed in丑uence domain of each node. The influence domain was a significant feature of 

EFM because it effected on the accuracy and cost of the method. At the same time, the absence of 
elements was a1so a key point of EFM, which yie1ded easier prepr∞essing and lower cost 出an those of 

FEM.ln 出is paper, the scheme of EFM wou1d be shown for fuU scalar or elastic wave equation. Based 

on the theory, a simp1e examp1e was discussed in detai1s to indicate 也e good effectivity of EFM. 

Furthennore, some s戸1由etic examp1es wiU be shown to discover 血e good performance of EFM in 

seismic modeling and 回目gingprob1ems. It is clear that comp1ex s加はC旬res can be 田ode1ed and imaged 

very weU such as high-ang1e dip and high-ve10city anoma1y even under comp1ex surface conditions 
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INTRODUCTION 

Wave equation method is a well known seismic modeling 叩d imaging method. Quite a few 

numerica1 algorithms are deve10ped such as the Finite Di妊erence Me白od (FDM) and the Finite 

Element Method (FEM) (Claerbout, 1971; Marfu目， 1984). A meshless method, E1ement-Free Method 

(EFM) (Be1ytschko et a1., 1994; Lu et a1., 1995), cou1d be a possib1e solution for seismic wave 

mode1ing and imaging. As a m副er of fact, the EFM has been demonstrated successfu1 in elasticity, 
heat conduction and fatigue crack growth prob1ems (Be1ytschko et a1., 1994). In 也is paper we wiU 

app1y the EFM to solve seismic wave equation 

In recent yea四， mesh1ess approximations have become promising methods in solving partia1 

d妊erential equations due to their economy and convenience in applì回tions (Nayro1es et a1., 1992; Zhu 

et a1., 1998). The EFM is one of白田em田h1e田 approaches. On1y noda1 data in 血e EFM are required in 

contrast with more know1edge of element connectivity in the FEM. The e1ement mesh is unnec田sary.

Consequently its preproc田sing saves much more t町田 and computer r田ources than that of the FEM, 

and the absence of e1ements g町田 this method some kind of flexibi1ity as weU. In 血e FEM it is a hard 

work to determine the shape function due to the comp1ex r田traints on it. But in the EFM, these 
restraints are mostly re1eased, which makes the shape function easily generated with the Moving Least 
Squares (MLS) criterion. Furthermore，出e accuracy of dependent variab1e in the EFM is no more lower 
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than 也at in the FEM. Indeed, the dependent variable and its gradient are both continuous and therefore 
posトpro目:ssing to obtain a smooth gradient field is unnecessary. Based on the theory, this paper will 
show the applications of the EFM on seismic modeling and imag回g.

SOLVING WAVE EQUATION BY EFM 

The following wave propagation problem will be considered in domain n bounded by 1: 
ペ2

1と =DV'u
�' 

)
 

-(
 

where u is the displacement field, D is the square of media velocity, and t , x and y denote 

the time and space coordinates, respectively. The trial function is given by 

uh(x)= pT(X)α(x) (2) 

where p( x) is tl田 basis 刊ctor a凶n耐 two品nen畑山ase it is defmed by 

pT(x)=[l,x,y] or pT(x)=[1,x,y ,x' ,xy,y2] (3) 

In eq'刷on (2) 中) ﾎs an u山町 coef似町山ld it is detennined by minimizing the nonn as 

follows: 

J=土砂{x- x/)ν(x/)a(x)-uJ (4) 

where u / is the nodal value at X / and n is the number of po凹包泊出e neighborhood of x for 

which 帥 weight fur凶on 吋x-x/)>ü. Thisneψbo蜘od 回目l凶加 influence domain of x 

The weight function is defined that 出e further X / is away from X , the closer the weight would 
become to zero. 百1e method of equation (4) is called the MLS fitting criterion 

Subst刷

uh(x)= ψ(x)U (5) 

wh悶悶 伊(x) i路s 恥 d由明乱白伽1江削r
E向qu削a剖tion (σ切5吟) wou耐11ωld be a叩ppμli凶e吋d t旬o e叫qu削a剖tl加1旧lOn叩n (仰lり) u凶sm叫g t批he v刊an捌1旧叫a剖矧仰tiωion凹on回1阻al princ吋1申ple. If 吐出1e pe叩n問al均旬 G臼ωal耐e町rki凶n 

me剖thod i包su田se吋d， the discrete equation under 田sential boundary condition will be obtained as follows: 

KU+MU+Fq=O (6) 

where K is stifl色白s mat肌 M is ma田 matrix and Fq is 叩ival阻t load vector. For 血e tlme 

integrator, we use the ave日ge acceleration algorithm (Lu et a1., 1995) so 出at the time recursion 

田lations in 也e special case of homogenous boundary condition could be obtained easily and 

accurately 

The EFM 回n also be used to treat the problem of elastic wave equation. The equation under 

consideration is given by 

VTσ +b=pü (7) 

whereσIS S位ess vector, b is body force vector， ρis density of the medium 

Applying equation (5) to e司uation (7) by penalty Galerkin method will yield the same discrete 
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equation as equation (6) ほC明白at the expressions of K , M and F凡q bec∞。叩m引nor閃e c∞om岬lplic目ca蹴t阻e

than 吐出le above on悶e田S. Therefore, the time recursion relations will remain the same as the case of scalar 

equatlOll 

In 出is section, a numerical example of vibrant 日1m (Jia et a1., 2004) will be shown 柏田dicate 血e

good performance of the method. The vibrant film is fixed in the squ町e 0 壬 x :S 2 and O:Sy:S2. 

The pa悶ete町r D in 叩a司t1凹。叩n (1) i目s 3. As田su山m立m1凹1I時r

and i阻m出tí阻al v刊eloc白1tザy a拙s zero, we can obtain the displacement 四ytime at any point by solving this 

two-dimensional scalar wave equation problem. 

Both the FDM and EFM are employed to solve 也is problem. The grid used in the FDM is 33 x 33 

and in the EFM 21x21. The time steps for these two methods are 0.002s and O.OOls, respectively. In 
the EFM, Gauss quad日ture has been handled to obtain the ma仕ixes shown in equation (6). 百四 Gauss

cells are 20 x 20 and in each cell 3 x 3 quadra同町田 employed. For EFM, power おnction is adopted as 

血e weight function. In 白ct， 0血er functions such as exponential 五回ction and spline function 

(Belytschko et a1., 1994; Dolbow et a1., 1999) can also be chosen as 也e weight, provided that they are 

characteristic of nonnegativity and monotone decreasing 

The results of some typical nodes are shown in Fi忠lfe 1 for displacement and Figure 2 for 

displacement gradient in x direction. Figure 1 and Fi割問 2 indica臼 that in addition to good accuracy 

of displacement, the EFM has especially high accuracy of displacement gradient caused by smoothing 

effect of MLS fittingτ"his merit has made the EFM more popular in mechanics than in other fields 

since the gradient of displacement 阻 usually 四lated to str田s ands岡田.
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MODELING VIBRANT FILM BY EFM 
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Modeling the vibrant fihn: displacement results 
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Fig. 1 
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Modeling the vibrant film: displacement gradient results Fig.2 

SEISMIC MODELlNG AND IMAGING BY EFM 

As we know, the FEM and the FDM are very common in seismic modeling and 凹laging ， Here it will 

be proved that the EFM can also process the same problem very welL Three velocity models shown in 

Figure 3 a田 designed. For all of them the receivers are distributed evenly on the surface, The fi日t

model which inc1udes an embedded high-velocity anomaly and a complex 

respectively are used for the 回se of acoustic poststack modeling and in1aging. The second model is 

designed for 出e case of acoustic prestack modeling and imaging. The last model is just tested for the 

elastic pr田tack modeling problem. The theory of eλploding reflector is used to generate pos也tack

seismograms; at the same time, a single split spread is adopted to create pr田tack seismograms. The 

sour，田s are sketched in 出e figure. On the other hand, we use reverse-time migration (McMechan, 1983) 

to obtain the in1ag田 We employ 53 x 53 regular nodes for the 五rst two models and 33 x 33 nodes for 

the elastic modeL The time step is 0.002s. For each model 30 x 30 Gauss cells and 3 x 3 Gauss 

quadrature are used. The power function is chosen as the weight function 

surface st四C出回

Fi伊re 4 shows the modeling and imaging results ofthe first modeL In Fi駅間 3(a)， V, = 1000mls , 

V2 = Vs = 4000mls ， ν'3 = 2000mls and v4 = 8000mls. The paraxial boundary conditions 
(Clayton et aL, 1977) are used to decrease the boundary reflections. 官官 events inc1uding primary 

reflections and residual boundary reflections could be recognized from the seismogram. In the 

reverse-time migrated section, both the high-velocity anomaly and the horizon n回r depth 900m are 

in1aged very welL The steep layer with its dip over 60' is also very c1ear 

In the prestack model shown in Figure 3(b) ， ν， = 1000mls and v2 = 4000立νs , A single shot is 

exploded 100m below the surface. Figure 5 shows its synthetic seismogram and corresponding in1aging 

result The boundary conditions are handled by the multi-transmitting forrnula (Liao , 1996). Moreover, 

the wavefront modeling should be operated to provide the traveltimes おr reverse-time migration. Since 
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the geome廿y re田ives 1i仕le data 世om the high-angle dip and the horizon near the geometry side, the 
image of these s仕uc加res can hardly be focused. 
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Velocity models 

Fur世田rmore， the multトcomponent modeling results for the last model are shown in Figure 6. 

Medium pa悶meters such as Young's modulus E , Poisson ratio σand density p in Figure 3(c) 

are provided as: EI =14x10'Pa , E, =25x lO'Pa ，広 =45x10'Pa and E4 =60xlO'Pa; 

0-1 = 0.4 ， σ" =0.25σ3 = 0.2 and σ4 = 0.1ρ't= ρ" = 2x1cYkg/m
3 

and 

P3 = P4 =2.5x103kg/m3
. Note 由民社le P-wave velocities of 出e upper two layers are the same 

while the S-wave velocities a田 difl品目nt. This means the multi-component modeling result may 

indicate the difference between th田e two layers which is absent in the acoustic modeling result. In 白ct，

from Figure 6 we can fmd thal the reflection occuπing on the surface at depth 250m has just very li壮le

x-component while very marked y-component. Besides the direct wav田 and primary reflections，出e

other events such as prim紅y converted 回目ection could also be tracked. The paraxial wave equations 

are still used as 白e absorbing boundary conditions in 也18 case 
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Poststack modeling (left) and imaging (right) results for model (a) Fig.4 

議援

Prestack modeling (le宜) and imaging (right) results for model (b) Fig.5 
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F閃stack modeling results (left …x component; right -y component) for model (c) Fig.6 

CONCLUSIONS 

Element-free method, one ofthe most impor祖国 meshless methods, has been developed originally in 
出e 自eld of mechanics. ln the EFM, the element is unnecessary which saves much computational cost 
The influence domain of weight 長田ction is also a key fea回re of the EFM, and one can regard the 
influence domain as some equivalent element. When enforcing 出e essential boundary conditions, 
Lagrange multiplier me白od， direct boundary collocation and the method using the weak form of the 

essential boundary conditions are commonly used as well as the penalty method 
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This paper has extended the EFM to seismic wave propagation problems. The results presented here 

show that 也e EFM is very promising on seismic modeling and imaging. Even the buried high-velocity 

anomaly and the stmc加res under complex surface conditions can be modeled and imaged successfully 

Note that the imaging results have been obtained in this paper without any prior proc田S泊g such as 

n01se a世間uation on the input data. On the other hand, the advantages of the EFM do not come wi也out

any costs. The compu出ion cost is still much higher than the FDM. However，也is demerit of cost 

would become mo田 andmo町田vial due to 也e 田:pid development of computers. 

REFERENCES 

Bel戸schko， T., Lu, Y. Y. , and Gu, L., 1994, Element-世間 Galerkin me出ods， International Journal for 

Nllmerical Met!zods in Engineering, 37, 229司256.

Claerbout, J. F., 1971 , Toward a unified 也eory ofreflector mapping, Geophysics, 36, 467-481 
Clayton, R.，叩d Engquist, B., 1977, Absorbing boundary conditions for acoustic and elastic wave 
equations, Bull. Seism. Soc. Amer. , 67, 1529-1540 
Dolbow, J. , and Belytschko, T., 1999, Numerical integration of the Galerkin weak fonn in meshfree 
methods, Computational Mechanics, 23 , 219-230 
Jia, X. , W四g， R., and Hu, T., 2004, Arbitrary difference precise integration method for solving the 
seismic wave equation, Earthquake Researclz in Clzina, 18, 36-41. 
Liao, Z. P., 1996, Extrapolation nonreflecting boundary conditions, Wave Motion, 24, 117-138 
Lu, Y. Y., Belytschko, T., and Tabbara, M., 1995, Element-世間 Galerkinmethod for wave propagation 

and d ynamic frac加re ， Compllter Met!zods in Applied Mechαnics and Engineering, 126, 131-153. 
Marfurt, K. J., 1984, Accuracy of finite-difference 阻d fmite-element modeling of the scalar and elastic 

wave equations, Geophysics, 49, 533-549. 

McMechan, G. A., 1983, Migration by extrapolation of time-dependent boundary values, Geophysical 
Pro司pecting， 31 , 413-420 

Nayroles, B., Touzot, G., and Vi11on, P., 1992, Generalizing the finite element method: diffuse 

approximation and diffuse elements, Complltatiollal Mechani口， 10 ， 307司318.

Zhu, T. , Zhang, J., and Atluri, S. , 1998, A local boundary integral equation (LBIE) method in 

computational mechanics, and a meshless discretization approach, Computational Mechani口， 21 , 
223目235.

27 


