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ABSTRACT
The need for quantitative imaging of the near subsurface leads to the development of inversion 
algorithms to infer ground properties from recorded data. The aim of this study is to validate an 
inversion method recently developed for the simultaneous imaging of dielectric permittivity and 
electrical conductivity from 2D ground-penetrating radar measurements. The validation is per-
formed using electromagnetic data collected in a well-controlled laboratory environment. In this 
experiment, the knowledge of the targets enables a quality control of the inversion results. In addi-
tion, the free space environment and the measurement of the incident field simplify the choice of a 
starting model for the inversion, as well as the calibration of the data with respect to the source 
signature and to the geometrical spread. To perform accurate and efficient forward simulations, we 
use a frequency-domain finite-difference scheme whose stencil coefficients can be optimized for 
each simulated frequency. As the objects of interest are locally concentrated at the centre of the 
acquisition array, it is possible to restrict the computation domain to a small region enclosing the 
targets using an integral representation of the analytical incident field coming from the sources and 
of the scattered field that we analytically propagate towards the receivers. An analysis of the 
numerical errors done on synthetic data shows that this strategy provides an error level that is low 
enough not to perturb the inversion, while dramatically decreasing the computational cost compared 
to a full-domain simulation. The monoparameter reconstruction of a purely dielectric target recovers 
permittivity values in very good agreement with the expected ones, as well as a very satisfying data 
fit. We also validate our strategy for multiparameter inversion on targets involving both a purely 
dielectric cylinder and a purely metallic copper tube, although the optimization cannot recover the 
exact conductivity of copper.

position of the material (Deeds and Bradford 2002; Ihamouten et 
al. 2012) or of its water content (Garambois et al. 2002; Huisman 
et al. 2003; Day-Lewis et al. 2005; Weihermüller et al. 2007).

Recently, Lavoué et al. (2013, 2014) proposed an imaging 
method based on the full waveform inversion (FWI) of GPR data 
for the reconstruction of permittivity and conductivity in 2D sec-
tions of the subsurface. FWI is a state-of-the-art quantitative 
imaging process that aims to exploit the whole information from 
the radargrams. Recent applications of FWI to GPR data have 
already been shown to be efficient for water content estimation 
in the first centimetres of agricultural soil (e.g. Lambot et al. 
2006; Minet et al. 2010) and for the estimation of permittivity 
and conductivity in stratified structures such as concrete 
(Kalogeropoulos et al. 2011; Patriarca et al. 2011) or layered 

INTRODUCTION
The quantitative imaging of the near subsurface through non-
invasive prospecting techniques appears to be a crucial challenge 
in many fields of application. Among the geophysical methods 
available to explore the subsurface, ground-penetrating radar 
(GPR) is particularly interesting for its high resolution proper-
ties, despite its depth penetration limits. In geological, hydro-
logical and geotechnical investigations, GPR can provide a 
qualitative view of the geometry of the sounded medium as well 
as quantitative information on the dielectric permittivity ε [F/m] 
and on the electrical conductivity σ [S/m] in the subsurface. 
These properties can in turn be interpreted in terms of the com-
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(ε = 1, σ >> 1 S/m) of diameter 2.85 cm and of thickness 2 mm. 
We will use this dataset to challenge our strategy for multiparam-
eter inversion. Of course, we cannot hope to reconstruct the exact 
amplitude of the conductivity anomaly (which is around 106 S/m 
for pure copper). But we can analyse the trade-off effect between 
permittivity and conductivity, i.e. the trend to recover erroneous 
non-zero conductivity values for the foam cylinder, or permittiv-
ity values ε

r ≠ 1 for the copper.
Table 1 sums up the measurement properties. For the target 

FoamDielExt, measurements are performed for 9 frequencies 
between 2 and 10 GHz, and repeated over 8 source positions 
with an interval of 45°. For the target FoamMetExt, measure-
ments are performed for 17 frequencies between 2 and 18 GHz, 
and repeated over 18 source positions with an interval of 20°. In 
the latter case, the extension of the frequency bandwidth and the 
refinement of the source sampling aim at better constraining the 
multiparameter inversion for the reconstruction of the complex 
target FoamMetExt (Geffrin et al. 2005).

In the frequency range we consider, target sizes are of the 
order of – or even below – the smallest wavelength in free space, 
while the propagation distance goes beyond 100 wavelengths 
(see Table 2). Two aspects may require our attention. First, we 
cannot expect to recover the exact thickness of the copper tube 
which is of the order of λ/8 for the highest available frequency, 
given that the maximal resolution of our imaging algorithm, 
based on the diffraction principle, is of the order of λ/2. 
Secondly, we can expect to face a numerical challenge to simu-
late the wave propagation over 100 wavelengths between the 
target and the receivers (even over 200 wavelengths on the path 
source-target-receiver).

rotated to acquire data at different source positions, the angle 
between source and receiver always being comprised between 
60° and 300°. For each source and receiver position, two meas-
urements are performed: one for the incident field u

inc
 in free 

space (without the target) and one for the total field u
tot (with the 

target), enabling us to deduce the field scattered by the targets 
u

sc
 = u

tot
 – u

inc
. Finally, measurements for the two modes TE and 

TM are available. In this study, we consider only the measure-
ments performed in TM mode which involves the electric field 
component E

z
 polarized perpendicularly to the observation 

plane (xy). Please note that we follow the same terminology as 
Geffrin et al. (2005) by adopting the convention of the electro-
magnetic community for the TM mode (it is the TM

z
 mode 

defined in Taflove and Hagness 2005, p. 55). It corresponds to 
the TE mode for the geophysical community (see e.g. Jol 2009, 
Fig. 1.8, p. 13).

Figure 2 shows synthetic models corresponding to the targets 
we will consider in the following, labelled as FoamDielExt 
(Fig. 2a) and FoamMetExt (Fig. 2b,c) by Geffrin et al. (2005). 
The target FoamDielExt consists of two purely dielectric cylin-
ders made of foam (εr = 1.45 ± 0.15) and of plastic (εr = 3 ± 0.3), 
of diameters 8 cm and 3.1 cm, respectively. Their conductivity is 
considered to be zero. Geffrin et al. (2005) perform numerical 
modelling on these synthetic models using a method of moments 
and domain integral formulations, so that we can compare our 
simulation results. Regarding the inversion, we will use the 
experimental dataset FoamDielExt in order to validate the 
monoparameter reconstruction of permittivity. The target Foam-
MetExt consists of the same purely dielectric foam cylinder 
(εr  =  1.45 ± 0.15) and of a purely metallic copper tube 

Hustedt et al. 2004), which can simulate the total field in the 
entire domain without significant errors due to numerical disper-
sion and numerical anisotropy, but it implies a significant com-
putational effort. In a free space environment, it is highly desir-
able to restrict the computational domain to a small region 
enclosing the targets. Following the work of Wilcox and Velichko 
(2010), we use an integral representation of the fields to inject an 
analytical incident field in the reduced computation domain 
where FDFD computations are performed. A similar integral can 
be used to propagate analytically the recorded scattered field 
back to the real receiver locations. However, the discretization of 
the integral leads to numerical errors whose magnitude must be 
compared with the dispersion errors of the pure numerical 
approach to assess the advantage of one strategy over the other. 
In a second part of this paper, we challenge our imaging algo-
rithm by reconstructing first a purely dielectric target (monopa-
rameter inversion) and secondly a target containing both dielec-
tric and metallic objects (multiparameter inversion).

PRESENTATION OF THE DATA
Figure 1(a) shows the configuration of the experiment in the 
(xy)-plane (see Geffrin et al. 2005, their Fig. 1, for a 3D repre-
sentation). The targets, located at the centre of the acquisition 
array, consist of cylinders elongated in the z-direction. Several 
experiments were performed for different targets (Geffrin et al. 
2005). For each experiment, the transmitting and receiving 
antennas are moved on a circular frame of radius de = 1.67 m 
around the targets. Figure 1(a) exemplifies one source location 
(black cross) and the corresponding receiver locations (black 
dots), sweeping successively every 1°. Following Geffrin et al. 
(2005), we denote θs and θr the angular positions of sources and 
receivers, respectively, and we call angle between source and 
receiver the angle | θs – θr | formed by the source, the target and 
the receiver (see Fig.  1a). During the experiment, the array is 

soils (Busch et al. 2012). FWI has also been applied to cross-
hole radar data for the imaging of permittivity and conductivity 
in 2D and pseudo-3D (e.g. Ernst et al. 2007; Meles et al. 2010; 
Ellefsen et al. 2011; Klotzsche et al. 2013).

In their previous contributions, Lavoué et al. (2013, 2014) 
perform numerical analysis on synthetic data to address the prob-
lem of multiparameter imaging of permittivity and conductivity 
by FWI in surface-to-surface acquisition configuration (on-
ground GPR) that leads to a decreased illumination of the targets 
in the subsurface. To tackle the multiparameter FWI problem, 
they propose a joint optimization in the permittivity-conductivity 
parameter space. In this approach, permittivity and conductivity 
models are updated using a quasi-Newton scheme that considers 
the effect of an approximated Hessian matrix on the descent 
direction. The Hessian matrix (second-order derivatives of the 
misfit function) is expected to be crucial for multiparameter 
problems as it accounts for parameter dimensionalities and for 
possible trade-offs between different parameter types (Pratt et al. 
1998; Operto et al. 2013). The strategy of Lavoué et al. (2013, 
2014) involves parameter scaling and regularization factors to 
determine optimal solutions for the permittivity and conductivity 
distributions, based on the analysis of the data fit. In the present 
study, we would like to validate this strategy for multiparameter 
imaging by considering the inversion of well-controlled data 
acquired in a laboratory environment that provides a complete 
illumination of the targets.

The experimental scattering database collected by the 
Institut Fresnel (Marseille, France) is an interesting tool for 
testing and validating inversion algorithms on real physical 
data (see the dedicated special sections Belkebir and Saillard 
2001, 2005; Litman and Crocco 2009). In this work, we focus 
on a dataset acquired on inhomogeneous targets (Belkebir and 
Saillard 2005), with a particular interest for those involving 
both dielectric and metallic objects which enable us to address 
the problem of multiparameter reconstruction. The targets are 
cylinders located in free space (i.e., surrounded by air) and 
elongated perpendicularly to the observation plane, so that the 
problem can be considered to be 2D (see Geffrin et al. 2005, for 
the description of the experimental setup). The use of such 
experimental data greatly simplifies some issues that usually 
constitute major obstacles in FWI applications. First, the free 
space environment eliminates the crucial question of designing 
a suitable initial model. Second, the measurement of the inci-
dent field (in the absence of the targets) enables us to accu-
rately characterize the source signature and to calibrate the 
recorded data. 

The present paper is organized in two parts, related to the two 
components of our imaging algorithm, namely the forward and 
the inverse problems. A preliminary but important aspect of the 
validation task concerns the design of the forward modelling to 
accurately and efficiently reproduce the observed data. Our fre-
quency-domain finite difference (FDFD) modelling uses a 
mixed-grid stencil with optimized coefficients (Jo et al. 1996; 

FIGURE 1

(a) Acquisition setup and computation domain. The cross located at θs = 45° 

indicates a source and the dots between θr = 105° and θr = 345° the corre-

sponding receiver locations. The 80-cm-by-80-cm black box corresponds to 

the reduced domain for FDFD computation. (b) Zoom on the computation 

domain. The 30-cm-by-30-cm green box delimits the zone reconstructed 

during the inversion. The red circle indicates the loading contour (393 vir-

tual sources) and the blue one the monitoring contour (472 virtual receivers).

FIGURE 2

Synthetic models corresponding to the experimental targets. (a) FoamDielExt (permittivity model). (b,c) FoamMetExt (b, permittivity; c, conductivity). 

In panels  (a) and (b), the central foam cylinder has a permittivity εr = 1.45.

TABLE 1

Measurements properties (after Geffrin et al. 2005, their Table 1).

Dataset Frequencies Sources Receivers

Nb Min-max Interval Nb Interval Nb Interval

FoamDielExt 9 2-10 GHz 1 GHz 8 45° 241 1°

FoamMetExt 17 2-18 GHz 1 GHz 18 20° 241 1°
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Figures 3(a) and (c) show the incident fields resulting from equa-
tion (4) at frequencies 2 and 18 GHz respectively, using a con-
tour element δC = 4 mm (= λ/4 at 18 GHz). Perfectly Matched 
Layers (PMLs, Bérenger 1994) are used to absorb the waves on 
the edges of the computation domain (not shown). In Figs 3(b) 
and (d), the relative errors against analytical solution are shown. 
Using the integral representation to inject the incident field in the 
reduced domain, we achieve an error level which is slightly 
higher than when computing the field in the entire domain  
(  0.5% vs.  0.2% respectively), but it still remains of the same 
order of magnitude and we consider it as satisfactory.

An important property of the integral representation, equation 
(2), is that the incident field synthesized by the virtual array exists 
only inside the contour C, where equation (2) is valid (see Fig. 3). 
However, if a scatterer is placed inside the contour, then the scat-
tered field generated by the incident field of equation (2) exists 
both inside and outside the contour (because the scatterer acts as 
an internal source). This property is illustrated in Fig. 4, where we 
inject the incident field of Fig. 3(a) in a domain that contains the 
target FoamDielExt of Fig. 2(a). The scattered field is then ana-
lytically propagated using equation (3) from the monitoring con-
tour (blue circle in Fig.  4) up to the receiver positions on the 
acquisition array (see Fig. 1a). Note that if the monitoring contour 
were placed inside the loading contour, recording the total field, 
we would still propagate only the scattered field outwards the 
contour using equation (3) (this is a property of the Helmholtz-
Kirchhoff integral). We place the monitoring contour outside the 
loading contour to avoid the cumulative errors of the two integrals 
on the propagation of the incident field.

In order to evaluate the numerical error done on the scattered 
field computed in the reduced domain and propagated towards 
the receivers, we perform the following simple test: We put a 
point source at the centre of the acquisition frame (instead of the 
target), we record the resulting field on the monitoring contour, 
and we propagate it analytically towards the receivers on the 
acquisition array. We then compare the values obtained at 

The minus sign before the integral is due to the orientation con-
vention of the outward-pointing vector n.

We use the windowed Sinc interpolation proposed by Hicks 
(2002) to accurately locate the virtual sources on the integration 
contour that do not coincide with the finite-difference grid. This 
interpolation consists of spreading the source excitation on sev-
eral grid nodes around the true source location to mimic a band
limited version of a monopole or dipole point source. Because 
the implementation of point sources creates singularities in the 
numerical solution, it is not possible to record the scattered field 
u

sc
(s) of equation (3) in the neighbourhood of nodes where the 

incident field u
inc

(s) is injected (equation 2). Following Velichko 
and Wilcox (2010), we therefore implement two distinct con-
tours: a loading contour C

l
 to inject the incident field and a 

monitoring contour C
m
, located outside the loading contour, to 

record the scattered field and apply equation (3) to propagate it 
towards the receiver in the far-field region (see Fig. 1).

The discretization of the loading contour Cl in Nl segments of 
length δC then leads equation (2) to become

� (4)

where the operators Dx and Dz correspond to x- and z-oriented 
dipoles using the windowed Sinc interpolation and θi is the angu-
lar position of the ith virtual source. The partial derivatives of the 
incident field uinc are computed analytically.

Conversely, when implementing equation (3), the windowed 
Sinc interpolation is used to extract values of the scattered field 
at virtual receivers on the monitoring contour Cm and the deriva-
tives of the propagator G are computed analytically:

.� (5)

To do so, we use an integral representation of the fields, following 
the work of Wilcox and Velichko (2010) and Velichko and Wilcox 
(2010). Integral representations are usual in non-destructive test-
ing applications (NDT). For instance, it has been recently used by 
Zhao et al. (2013) for GPR data redatuming in a tunnel grouting 
test context. In our case, it is particularly suited because we know 
the exact analytical solution for the wave propagation in free 
space between the acquisition array and the target region. The 
Helmholtz-Kirchhoff integral provides an expression for the sca-
lar wavefield u at any point r within a closed contour C, as a 
function of an arbitrary field uinc on the boundary:

[ ]( ) ( , ) ( ) ( ) ( , ) ,inc incC
u G u u G dS= ∇ − ∇ ⋅∫r r s s s r s n � (2)

where n is the outward normal-contour vector and G(r,s) denotes 
the Green function, i.e. the field value at point r, resulting from 
a source located at s. The vector r locates a point inside the con-
tour C, while the vector s points on the contour. In other words, 
we can deduce the field u inside the contour from the superposi-
tion of fields generated by monopole sources (G terms) and 
dipole sources (∇G terms) located on the contour. In the follow-
ing, we will refer to these sources as virtual sources (in 
opposition with real ones, located on the acquisition array out-
side the computation domain, see Fig. 1a). In expression (2), the 
Green function G(r, s) is computed numerically with the FDFD 
scheme. The values of the incident field on the contour u

inc
(s) are 

known analytically as the solution of 2D wave propagation in 
free space between the real and the virtual source arrays (see e.g. 
Taflove and Hagness 2005, §5.3.1, p.172). 

A similar integral representation can be used to describe the 
scattered field u

sc
(r) outside the contour C if the scattered field 

on the contour u
sc
(s) is known (Velichko and Wilcox 2010):

[ ]( ) ( , ) ( ) ( ) ( , ) ,sc sc scC
u G u u G dS= − ∇ − ∇ ⋅∫r r s s s r s n � (3)

where the vector r now locates a point outside the contour. In 
equation (3), the scattered field u

sc
(s) on the contour is computed 

numerically with the FDFD scheme (it corresponds in fact to the 
field u(r) in equation 2), while the propagator G(r, s) and its 
gradient across the contour ∇G(r, s) are computed analytically. 

FORWARD PROBLEM
Numerical strategy
A first challenge consists in accurately and efficiently perform-
ing synthetic simulations to be compared with experimental data 
in the inversion process. In this study, we use a FDFD scheme 
based on the optimized mixed-grid stencil of Hustedt et al. 
(2004), which leads to the linear system

A(ω, m) u(ω) = S(ω)� (1)

where ω is the simulated angular frequency (in rad/s), m rep-
resents the physical model, A is the impedance matrix result-
ing from the FDFD scheme, u is the simulated wavefield (i.e. 
the component Ez in TM mode) and S denotes the source term. 
We solve the linear system (1) for each frequency through a 
LU factorization using the direct solver MUMPS (MUMPS-
team 2011).

In the finite-difference scheme, the optimization of the 
weighting coefficients of the stencil for a given λ/h ratio (with h 
the grid step) enables us to minimize the errors due to numerical 
dispersion and numerical anisotropy (Jo et al. 1996; Hustedt et 
al. 2004). It is thus possible to achieve an error of less than 1.5% 
on the incident field recorded by the receivers. However, the 
computation in the entire domain of Fig. 1(a) implies a signifi-
cant computational effort, both in terms of CPU time and of 
memory requirement, especially because the large number of 
degrees of freedom requires the use of double precision arithme-
tic to avoid instabilities in MUMPS. In view of the inversion, the 
efficiency of the forward problem is crucial. In a free space 
environment, it is highly desirable to restrict the computational 
domain to a small region enclosing the target, as shown in 
Fig. 1(b).

To perform the inversion in this reduced domain, we must  
be able:
(i)	�to inject in the domain an arbitrary incoming wavefield emit-

ted from a remote source of the real acquisition array located 
outside the domain,

(ii)	�to propagate analytically the field scattered by the target and 
computed numerically in the reduced domain back to the real 
receiver locations outside the domain.

Objects/lengths (cm) 2 GHz 10 GHz 18 GHz

λ = 15 cm λ = 3 cm λ = 1.7 cm

Grid step h 0.1 λ / 150 λ / 30 λ / 16

Copper thickness 0.2 λ / 75 λ / 15 λ / 8

Copper diameter 2.85
 λ / 5 λ  1.8 λ

Plastic diameter 3.1

Foam diameter 8.0 λ / 2 2.7 λ 5 λ 

Distance target-receiver 167 11 λ 56 λ 100 λ 

Dist. source-target-receiver 334 22 λ 112 λ 200 λ 

TABLE 2

Target sizes and propagation dis-

tances in terms of wavelengths λ 

propagated in free space.

FIGURE 3

(a,c) Wavefields emitted by the virtual source array (loading contour, in red). The blue circle indicates the monitoring contour. (b,d) Relative difference 

with the corresponding analytical wavefields. (a,b) 2 GHz, (c,d) 18 GHz. Excepted at nodes where sources are injected, the errors are below 0.47% at 

2 GHz (b) and below 0.29% at 18 GHz (d) (to be compared with the errors done when performing the FDFD computation in the entire domain, which 

are below 0.19% and 0.14%, respectively). Note that the error ∈is not computed in the same way inside and outside the loading contour: inside the 

contour, ∈= |unumerical – uanalytical| / |uanalytical|, and outside, ∈ = |unumerical| / |uanalytical| (because unumerical should be zero).
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similar to those of Geffrin et al. (2005 their Fig. 8). As suggested 
by these authors, we also perform a simulation in a modified 
version of the model shown in Fig. 2(a), where we translate the 
targets by dx = 2 mm and dy = 1 mm, and we replace the permit-
tivity value of the plastic cylinder by 3.3 instead of 3 to obtain a 
better match (blue dashed line in Fig. 6).

For the target FoamMetExt (Figs 2b,c), simulation results at 
18 GHz are shown in Fig. 7 (black line). In this case, our simula-
tion results differ slightly from those presented by Geffrin et al. 
(2005, their Fig. 11): Contrary to these authors, who calibrate the 
amplitude of their numerical solution such as to match the cen-
tral diffraction peak (at 180°), we do not recover the same ampli-
tude for the observed and for the synthetic data at 180°. 
Nonetheless, we obtain a similar match as Geffrin et al. (2005) 
for the other angles. These differences in amplitude with respect 
to angle are probably due to our 3D-to-2D conversion which is 
based on the incident field in free space (without the target): It 
may be thus poorly valid to convert the signal recorded at 180°, 
which is transmitted through the target. Again, we perform simu-
lations in a modified version of the FoamMetExt models of 
Figs 2(b,c), where we replace the conductivity value of the cop-
per tube by 100 S/m instead of 5 S/m (blue dashed line). Doing 

Figure 5 shows the obtained source spectrum, both in amplitude 
and phase. Computing the spectrum for all source positions, we 
find that its variations with respect to source location θ

s are neg-
ligible (of the order of 0.01%), showing the quality of these 
highly reproducible data.

Once we know the spectrum S
obs

(ω) from the measurements 
in pure transmission configuration, we could deduce the radia-
tion pattern of the antennas from the incident field recorded at 
the other incidence angles. However, we do not need it for our 
present study because we only consider the scattered field for the 
inversion. As the scattered field results from an incident field 
impinging the target at zero incidence (from the source point of 
view), and as it is itself recorded at zero incidence by the receiv-
er, we can reasonably neglect the effect of the radiation pattern 
on the scattered data.

A last step to make the observed and calculated fields compara-
ble is to correct for the 3D geometrical expansion, in order to build 
2D observed data. By analogy with expression (6), we assume that 
the observed and synthetic scattered data can be written as

� (8)

� (9)

where Scal(ω) is a known factor depending on our FDFD imple-
mentation, G2D is the 2D Green function which is known ana-
lytically, dstr is the distance travelled by the scattered wave from 
source to target and from target to receiver, which can be 
approximated by 2str ed d , and T is the response of the targets, 
which can be considered identical in 2D and 3D since the targets 
have a 2D geometry. Thus, the transformation to be applied to the 
observed data to compare them to the synthetic ones is

( ) ( ), 2 2

3

( ) ( , 2 ), , , , ,
( ) ( , 2 )

obs D obscal D e
sc s r sc s r

obs D e

S G d dd
S G d

ω ωω θ θ ω θ θ
ω ω

= � (10)

where the 3D-to-2D conversion factor 3 2 2 3/D D D Dk G G→ =  can be 
expressed by using the far-field approximations of the Green 
functions (see Taflove and Hagness 2005, §8.2.2, p.332),

/4
3 2 2 ,e o
D D

d ck eιππ
ω→ = � (11)

with c
o
 the velocity of light in free space and ι the imaginary unit.

Simulation of synthetic data
Simulation results performed in the synthetic models of Fig. 2 
are shown in Figs 6 and 7 for the targets FoamDielExt and 
FoamMetExt, respectively. We choose the same frequencies and 
source positions as shown by Geffrin et al. (2005, their Figs 8 
and 11) such that we can compare our results. In view of the 
inversion, we also perform numerical simulations in modified 
versions of the synthetic models of Fig. 2, in order to investigate 
the sensitivity of the data to model variations.

For the target FoamDielExt, our simulation results are very 

These characteristics have to be accounted for to convert the 
observed data in a value that we can compare with the synthetic 
ones.

Usually, the estimation of the source complex spectrum is 
performed as a part of the frequency-domain inversion process 
by linear estimation (Pratt 1999). In our case, however, it is 
highly beneficial to apply this estimation to the incident field 
measured in free space, which enables us both to characterize the 
antennas and to perform a simple 3D-to-2D conversion. To do so, 
let us write the observed data obs

incd  resulting from the measure-
ments of the incident field, for each angular frequency ω, each 
source located at angle θs, and each receiver at θr, as

� (6)

where S
obs

(ω) denotes the source complex spectrum, 
R

obs
(ω ,θ

s –  θ
r
) accounts for the spatial radiation pattern of the 

antennas, and G3D
 is the Green function of electromagnetic wave 

propagation in 3D, that varies with the distance d
sr
 travelled by 

the wave from source to receiver.
If we adopt the convention that, for each angular frequency ω, 

the radiation pattern coefficients are 1 in pure transmission 
regime (i.e., R

obs
(ω, θ

o
) = 1 for an angle between source and 

receiver of θ
o
 = | θ

s
 – θ

r
 | = 180°), then we can deduce the source 

spectrum of the antennas from the incident field recorded in 
transmission configuration:

inc s r s o, ,ω θ θ θ θ( )
3

( ) .
( , 2 )

obs

obs
D rs e

d
S

G d d
ω

ω
= −

=
=

� (7)

receivers with the analytical solution and we find an error below 
0.3%. Note that, when an incident field is injected on the load-
ing contour and impinges a target, the error on the scattered field 
resulting from equation (3) should also include the error done 
on the injected incident field (  0.5% after Fig. 3). So we can 
estimate the global error done on the scattered field to approxi-
mately 0.8%. To compare this error with the full-domain case, 
we have to consider that, when computing the scattered field in 
the entire domain, the solution suffers from errors due to numer-
ical dispersion and numerical anisotropy on the entire travel 
path source-target-receiver (of length  2de). As a result, in the 
full-domain case, we consider that the error on the incident data 
recorded in transmission configuration (that we can compute 
against analytical solution) is also representative for the error 
done on the scattered data.

These results are reported in Table 3, together with the associ-
ated computational requirements. Regarding the errors done on 
the incident and scattered fields, the restriction of the computa-
tion in the reduced domain using the integral representation 
appears as a satisfying alternative to the full-domain computa-
tion, decreasing the computational time by a factor of more than 
20, while dividing the memory requirement of the LU factoriza-
tion by a factor of 40.

Data pre-processing
To be able to compare our synthetic data with the observed ones, 
we have to consider that observed and calculated data differ by 
three major aspects:
(i)	 Observed data are 3D whereas our modelling is 2D.
(ii)	� The antennas used in the experiment have a given frequency 

signature, whereas the simulated source is a Dirac in time 
(unity source in the frequency domain).

(iii)	� The experimental setup use ridged horn antennas with a 
given radiation pattern whereas the modelling assumes an 
elementary dipole oriented in the z-direction which radiates 
isotropically in the (xy)-plane.

FIGURE 4

Example of wavefield scattered by the synthetic target FoamDielExt of 

Fig. 2(a), illuminated by the incident field of Fig. 3(a), at 2 GHz. Inside 

the loading contour (red circle), the total field is computed, whereas only 

the diffracted field propagates outside and is recorded by the monitoring 

contour (blue circle).

TABLE 3

Computation cost and accuracy of full-domain vs. reduced-domain 

FDFD simulations. The LU factorization and the resolution of the linear 

system are performed by MUMPS in parallel on 16 MPI processes. We 

report elapsed times using one node of 16 cores of the Froggy cluster 

from the CIMENT platform (Univ. Grenoble). Note that the full-domain 

computation is performed with double-precision arithmetic while the 

reduced-domain computation uses single precision to achieve the level of 

accuracy indicated in the table.

Full domain Reduced domain

Number of grid points 
(including PMLs)

4051 x 4051 851 x 851

Elapsed time for LU 
factorization 

71 s 0.67 s

Time for FoamMetExt 
simulation (18 src, 17 freq.)

2100 s 98 s

MUMPS memory 
requirement (LU)

59 Go 1.5 Go

Error on the incident field 
in the reduced domain

< 0.2% < 0.5%

Error on the scattered field 
at receiver positions 

< 1.5% < 0.3% (0.8%)

FIGURE 5

(a) Amplitude and (b) phase of the antenna complex spectrum Sobs(ω).
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where R is the projection operator of the wavefield on the 
receiver location, which takes the integral representation and the 
windowed Sinc interpolation into account.

The second term M of the misfit function (13) introduces a 
Tikhonov regularization (Tikhonov and Arsenin 1977). The 
operator D corresponds to the Laplacian so that its minimization 
tends to provide smooth solutions. The hyperparameter Λ is a 
regularization weight that balances the importance given to 
model smoothness relatively to the data misfit. In equation (13), 
the symbol T denotes transposition and the notation † corresponds 
to the transposeT –conjugate* operator.

To minimize the misfit function, we use a quasi-Newton opti-
mization method (L-BFGS-B algorithm, Byrd et al. 1995) which 
performs a local descent based on the gradient of the misfit func-
tion G(mk) = ∇mk (mk). The gradient of the model term is 
straightforwardly computed by finite differences on the model mk 
whereas the gradient of the data term GD(mk) is computed via the 
adjoint state method (Plessix 2006). Differentiating equations 
(13) and (14) with respect to the model parameters, we have
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where cal
totu  verifies the equation of the forward problem (1), 

which gives by differentiation

u m ( ) 1( , ) ( , ), ( , ).
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ω ωω ω
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mm u m � (17)

Injecting equation (17) in equation (16) yields the expression of 
the gradient

� (18)

that our modelling tool fulfills the accuracy requirement: The 
inversion should not be affected by the numerical errors. The 
very good agreement between observed and synthetic data in 
Fig. 6, as well as the low error level compared to the residuals 
(Fig. 8), allow us to envisage the inversion of these data with 
some confidence. 

DATA INVERSION
Inverse problem formulation
Here we recall the basic ingredients of the method proposed by 
Lavoué et al. (2014). At each iteration k of the optimization pro-
cess, we aim at minimizing a misfit function that we define as the 
sum over frequencies of a data part D and of a model part  M:

(mk) = D (m
k) + Λ M (m

k),� (12)

	 � (13)

The first term D accounts for the misfit between the observed 
and the synthetic data through the -norm of the residuals 
Δd(ω,mk)=dobs(ω)-dcal(ω, mk) that measure the difference 
between the observed data dobs and the synthetic data dcal com-
puted in the current model mk. Usually, the residuals involve the 
total simulated wavefield utot. In our case, however, it is much 
more convenient to use the scattered field u

sc
 = u

tot
 – u

inc
 since

(i)	� it can be computed using the measurements of the incident 
field u

inc
,

(ii)	 it is insensitive to antenna radiation pattern,
(iii)	� it is the field that is analytically propagated toward the 

receivers by the integral representation (see equation 3 and 
Fig. 4).

Assuming that the incident field can be accurately simulated 
(which has been demonstrated by our numerical analysis, see 
Figs 3 and 8), we thus have

� (14)

	 � (15)

In Fig. 8, we compare in the case FoamDielExt the magni-
tude of the data residuals, i.e. the difference between observed 
and synthetic data, with the numerical errors, computed as the 
difference between the analytical solution of 2D wave propaga-
tion in free space and the synthetic incident field computed in 
the entire domain. According to the numerical analysis of the 
previous section, this error is an upper bound for the error done 
on the synthetic scattered field that will be involved in the inver-
sion (see Table 3). For information, we also indicate the magni-
tude of the total and scattered fields: As underlined by Geffrin 
et al. (2005), the high ratio between the magnitude of the scat-
tered and total fields makes the need for an accurate modelling 
critical. In Fig. 8, the error level is significantly lower than the 
data residuals for most of the source-receiver pairs (it is also 
true for other sources and frequencies, not shown in Fig.  8), 
which means that most of the residuals are due to differences 
between the synthetic model and the reality. This result suggests 

so, we obtain a better match at extreme angles. It shows that the 
data are well sensitive to conductivity variations in the copper 
tube and thus suggests that a quantitative reconstruction can be 
attempted, even if we cannot expect to recover the true value of 
conductivity in copper (  106 S/m). As another sensitivity test, 
we also compared the synthetic data of Fig.  7 with data com-
puted in a model where we replaced the empty copper tube of 
Fig. 2(c) by a full copper cylinder of same diameter and proper-
ties. An important result is that the full cylinder provides exactly 
the same scattered field as the empty tube when a high conduc-
tivity value is used for copper (σ = 100 S/m), suggesting that any 
information inside the real tube will be out of reach. Assuming a 
lower (non-physical) conductivity value for copper (σ = 5 S/m), 
data are slightly sensitive to the filling of the tube, which will 
have consequences in the reconstructions. 

FIGURE 6

(a) Amplitude and (b) phase of synthetic vs. observed data for the target 

FoamDielExt, for frequency 8 GHz and the source at θs = 270°. The so-

called corrected field (blue dashed line) corresponds to the synthetic field 

computed in a modified version of the model shown in Fig. 2(a) where 

we translated the targets by dx = 2 mm and dy = 1 mm and we replaced 

the permittivity value of the plastic cylinder by 3.3 instead of 3. The 

match between the observed diffracted field and the synthetic one is 

similar as in Geffrin et al. (2005, their Fig. 8).

FIGURE 7

(a) Amplitude and (b) phase of synthetic vs. observed data for the target 

FoamMetExt, for frequency 18 GHz and the source at θs = 240°. The 

match obtained with σ = 5 S/m for copper (black line) is similar as in 

Geffrin et al. (2005, their Fig. 11) for extreme angles but we do not 

recover the same amplitude as these authors at 180°. A better match is 

obtained with σ = 100 S/m (blue dashed line).

FIGURE 8

Comparison of the magnitude of 

the total and scattered fields vs. 

residuals and numerical errors, 

for frequency 8 GHz and the 

source at θ = 270°. The synthetic 

scattered field is computed in the 

modified version of Fig. 2(a). The 

numerical error is obtained by 

difference between the analytical 

solution and the total incident 

field computed in the entire 

domain.
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a nice example of the trade-off between permittivity and conduc-
tivity: comparing Figs 12 and 13, it can be observed that both 
permittivity and conductivity reconstructions vary inside the 
tube, indicating that variations of one parameter compensate the 
variations of the other regarding the data misfit. These trade-off 
effects justify the need for considering the Hessian matrix in 
multiparameter optimization schemes (Operto et al. 2013; 
Lavoué et al. 2014).

Apart from the artifact inside the copper tube, the two solu-
tions also differ by the amplitude of the fluctuations of permittiv-
ity values in the foam cylinder (again, the absence of fluctuations 
in the background is imposed by the bound constraints ε

r
 ≥ 1 and 

σ ≥ 0 given to the L-BFGS-B algorithm). Finally, the solutions 
present a thin circular artifact around the copper tube, a region to 
which the data should be sensitive. These effects can be miti-
gated by introducing a Tikhonov regularization in the optimiza-
tion, in order to obtain smoother permittivity models.

Figure 14 shows the final misfits that we obtain when per-
forming the multiparameter inversion with various scaling fac-
tors β and regularization weights Λ. As artifacts arise mainly in 

As this filter assumes a continuous coverage of the wavenumbers 
up to k

max
 (i.e. an infinitesimal spatial sampling), the full-band-

width low-pass-filtered log over-estimates the accuracy of the 
reconstruction and the actual reconstructed values exhibit a 
lower wavenumber content: Although very dense, the acquisition 
sampling still has an imprint in the final image. In particular, the 
source intervals are responsible for the radial symmetry observed 
in Fig. 9(a).

The image of Fig. 9(a) can thus be seen as the convolution of 
the real model with the resolution operator of the imaging tech-
nique. Knowing the frequency content of the source and the 
illumination of the target by the acquisition array, we could 
deconvolve the reconstructed image of Fig. 9(a) in an impulsive 
image that would better reflect the reality, as proposed by 
Ribodetti et al. (2000). This finite frequency effect also explains 
why, when the initial model is good enough, inverting all avail-
able frequencies simultaneously yields smoother images than 
inverting them sequentially as proposed by Pratt and Worthington 
(1990). Using a sequential strategy, the final reconstructed model 
results from the inversion of the highest frequency and is subject 
to mono-frequency fluctuations, whereas the simultaneous fre-
quency strategy benefits from a broadband frequency content 
(Lavoué et al. 2014).

Multiparameter inversion of the dataset FoamMetExt
To invert the dataset FoamMetExt, we apply the methodology 
proposed by Lavoué et al. (2014): As the choice of an adequate 
scaling factor β is not straightforward, we first perform several 
multiparameter inversions independently, using various scaling 
values, without regularization. Figure 11 shows the final misfits 
obtained with the different scaling factors. Based on the data 
misfit, a scaling factor β = 10 seems to be the most adequate 
value but we can observe that misfits of the same order of mag-
nitude can be obtained for lower values, down to β = 0.5.

As already observed by Lavoué et al. (2014) on synthetic 
data, the reconstructed models corresponding to roughly equiva-
lent misfits can be quite different. For instance, Figs 12 and 13 
show the reconstructed models obtained using scaling factors 
β  =  10 and β = 0.5, respectively. The permittivity solutions 
appear to be particularly sensitive to the choice of the parameter 
scaling, because the imprint of the foam cylinder on the data is 
less important than the one of the strongly diffracting copper 
tube.

The main difference between the two solutions is that, using 
a scaling factor β = 0.5, the optimization artificially creates an 
erroneous permittivity structure inside the copper tube. Based on 
our forward simulations, we know that this structure is not reli-
able because the measured data are not sensitive to the inner 
filling of the highly-conductive copper tube (σ >> 100 S/m). 
Synthetic data, however, may be sensitive to this structure since 
the reconstructed conductivity value is lower than the actual one 
(σ  5 S/m), in particular in the early iterations of the inversion. 
The erroneous permittivity reconstruction inside the tube is thus 

Fig. 10 which compares the observed data with synthetic data com-
puted in the reconstructed model of Fig. 9 (data are shown for the 
same frequency 8 GHz and source position θs = 270° as in Fig. 6).

It is interesting to note in Fig.  9(a) that the image presents a 
particular geometrical pattern: oscillations with a radial symmetry 
that manifest themselves as fluctuations on the blue curve in 
Fig. 9(b). These fluctuations are absent in the background due to 
the bound constraint ε

r ≥ 1 considered in the L-BFGS-B algorithm. 
In the target, the oscillating pattern is due to the limited wavenum-
ber coverage of our imaging technique, that depends both on the 
finite-frequency content of the data and on the discrete spatial 
sampling of the measurements by the acquisition array (Sirgue and 
Pratt 2004). For comparison, we indicate in Fig. 9(b) low-pass-fil-
tered versions of the expected (red) log, considering the full fre-
quency bandwidth from 2 to 10 GHz (in black), or only the lowest 
frequency of 2 GHz (in green). For filtering, we use the maximal 
reconstructed wavenumber given by Sirgue and Pratt (2004) as a 
function of frequency and of the minimal illumination angle:
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where v is the adjoint wavefield, that verifies the linear system 
A†v = R† ∆d and corresponds to the back-propagation of the residuals 
in the current model (Plessix 2006). 

In expression (18), the diffraction matrix ∂
mi

A characterizes the 
sensitivity of the data to the parameter m

i
, that refers either to the 

permittivity ε
i
 or to the conductivity σ

i
 at grid point i. Lavoué et al. 

(2014) promote to consider dimensionless parameters that can be 
gathered in the same model vector m, thus enabling to perform the 
optimization in the joint permittivity-conductivity parameter space 
(in opposition to cascaded or decoupled approaches as used for 
instance by Ernst et al. 2007; Meles et al. 2010; Ellefsen et al. 
2011). Thus, we consider a relative permittivity ε

r
 = ε / ε

o
 (with ε

o
 

 8.85 × 10-12 F/m the dielectric constant) and a relative conductiv-
ity σ

r = σ /σ
o
. The reference conductivity σ

o
 can be defined as σ

o
 

= ε
o

ω
o
, by analogy with the contrast function used in the inverse 

scattering community (see e.g. Abubakar et al. 2005), with ω
o
 a 

reference angular frequency that we take as the mean frequency of 
the measurements (i.e., we consider ωo = 2π × 6 GHz for the data-
set FoamDielExt and ωo  =  2π  ×  10  GHz for FoamMetExt). 
However, these definitions are arbitrary (they are only conven-
tions) and we pointed out in Lavoué et al. (2014) that the inversion 
is very sensitive to the priority given to the permittivity or to the 
conductivity update via the parameter scaling. Therefore, we intro-
duce an additional scaling factor β and we consider the couple of 
parameters (εr, σr / β) for the optimization. As detailed in Lavoué 
et al. (2014), a small value for the factor β will give priority to the 
reconstruction of permittivity, whereas a large scaling factor will 
enhance the conductivity update.

On synthetic experiments, Lavoué et al. (2014) propose a work-
flow to choose an adequate value for the scaling factor β, in con-
junction with an appropriate regularization weight Λ,  based on the 
data misfit analysis. In the following, we aim at validating this 
workflow on the experimental data provided by the Institut Fresnel. 
In all the following inversion tests, we stop the optimization process 
when the relative misfit decrease between two iterations becomes 
smaller than 104 times the machine precision (default stopping 
criterion in the L-BFGS-B algorithm, Zhu et al. 1997).

Monoparameter inversion of the dataset FoamDielExt
First of all, we wish to validate the quantitative imaging of permit-
tivity through monoparameter inversion, that does not involve any 
parameter scaling. The target FoamDielExt is particularly suited 
for this purpose as the objects are supposed to be purely dielectric 
and have well constrained permittivity values. Figure 9 shows the 
inversion result when inverting the 9 frequencies between 2 and 10 
GHz simultaneously, without any regularization (Λ = 0). During 
the inversion, the misfit function has been decreased by 98.8% 
within 32 iterations. We recover permittivity values of 1.42 ± 0.05 
for the foam cylinder and ε

r
 = 3.10 ± 0.42 for the plastic one (mean 

and variance are computed within the red dashed circles shown in 
Fig. 9a). These recovered values (in blue on the log in Fig. 9b) are 
in very good agreement with the expected ones (in red in Fig. 9b). 
On the other hand, the data fit is also very satisfying, as shown in 

FIGURE 9

Permittivity reconstruction of the target FoamDielExt by monoparameter 

inversion. (a) 2D model. The red dashed circles indicate the expected 

contours of the objects, after the translation by dx = 2 mm, dy = 1 mm 

suggested by Geffrin et al. (2005). (b) Logs extracted from the 2D mod-

els along the horizontal line y = 0. The reconstructed values (blue line) 

are compared to the synthetic model of Fig. 2(a) (red line) and to low-

pass-filtered versions of this model, considering the full frequency band-

width (black line) or only the lowest frequency (green line).

FIGURE 10

(a) Amplitude and (b) phase of observed vs. synthetic data computed in 

the final reconstructed model of Fig. 9, for frequency 8 GHz and the 

source at θ
s = 270°.
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image, the targets are well-delimited and the recovered values are 
very close to the expected ones. Observed and synthetic data are 
in very good agreement. We also confirm our strategy for mul-
tiparameter inversion on the dataset FoamMetExt. As already 
observed on synthetic data, the reconstructed models are sensitive 
to the scaling applied between different parameters types, espe-
cially for parameters that are less constrained by the data. These 
model variations can be barely visible in the data misfit, leading 
to an ambiguity between the different solutions. An adequate 
regularization weight enables to mitigate the artifacts, so that 
satisfactory models can be obtained and, more importantly, iden-
tified on the basis of the data misfit analysis. Besides, forward 
simulations on synthetic models are of great help to estimate the 
sensitivity of the data to model variations, and hence to evaluate 
the reliability of the inversion results. Synthetic data are almost 
insensitive to some parts of the model where our data-driven 

CONCLUSIONS
In this study, we have presented a comprehensive view of the 
inversion of electromagnetic data collected during a well-con-
trolled laboratory experiment. For an accurate and efficient reso-
lution of the forward problem, we use a FDFD scheme where the 
stencil coefficients are optimized to each simulated frequency. 
An integral representation of the fields enables to reduce the 
computation domain to a small zone enclosing the targets and 
has been shown to be an accurate, efficient, and elegant alterna-
tive to brute force calculations in the entire domain. An impor-
tant ingredient of the modelling consists in accurately position-
ing virtual sources and receivers on the integration contours 
using a windowed Sinc interpolation.

Scattered data produced by the purely dielectric target 
FoamDielExt allowed us to validate our algorithm regarding 
monoparameter inversion. On the reconstructed permittivity 

tion weight Λ can be selected based on the data misfit (Fig. 14), 
given that applying an adequate regularization, we obtain similar 
results for all scaling factors that display a good data misfit. Note 
that the Tikhonov regularization does not induce a dramatic 
smoothing of the solutions, although a multiplicative regulariza-
tion may better preserve the contrasts in the present case of well-
delimited, piecewise-constant targets (Abubakar et al. 2005).

Finally, Fig.  17 compares the observed data with the syn-
thetic data computed in the final reconstructed models of Figs 15 
and 16. The fit to the data is naturally dominated by the main 
peak amplitude of the signal at angles around 180°, while the 
data at extreme angles are not well fitted. Applying an angle-
dependent weighting to the data through a data covariance matrix 
in the misfit function could enable to better fit the data presenting 
minor amplitudes.

the permittivity image, whereas conductivity is better con-
strained by the data, we only apply regularization on the permit-
tivity model (a finer implementation might involve regularization 
weights adapted to each parameter type, depending on their 
imprint on the data, but this fine tuning is not critical for our 
purpose). Contrary to the results obtained by Lavoué et al. 
(2014), the final data misfits are not more sensitive to the param-
eter scaling with regularization than without, so the regulariza-
tion does not enable to distinguish between the solutions 
obtained with different scaling factors. However, looking at the 
final reconstructed models, we can observe that the permittivity 
solutions obtained with regularization are now quite similar (see 
Figs 15 and 16). The use of regularization erases the permittivity 
artifacts around the copper tube, yielding satisfactory results. 
Adequate values for the parameter scaling and for the regulariza-

FIGURE 11

Final misfit decrease as a func-

tion of the scaling factor β used in 

the multiparameter inversion of 

the dataset FoamMetExt.

FIGURE 12

(a,c) Permittivity and (b,d) conductivity models obtained by multiparam-

eter inversion of the dataset FoamMetExt, without regularization and 

using a scaling factor β = 10. The misfit function has been decreased by 

98.2% in 120 iterations. The logs of panels (c) and (d) are extracted along 

the line y = 0 in panels (a) and (b), respectively.

FIGURE 13

(a,c) Permittivity and (b,d) conductivity models obtained by multiparam-

eter inversion of the dataset FoamMetExt, without regularization and 

using a scaling factor β = 0.5. The misfit function has been decreased by 

97.5% in 61 iterations. The logs of panels (c) and (d) are extracted along 

the line y = 0 in panels (a) and (b), respectively.

FIGURE 14

Final data misfits as a function of 

the scaling factor β and of the 

regularization weight Λ used in 

the multiparameter inversion of 

the dataset FoamMetExt.

FIGURE 15

(a,c) Permittivity and (b,d) conductivity models obtained by multiparam-

eter inversion of the dataset FoamMetExt, using a regularization weight 

Λ = 10-11 and a scaling factor β = 10. The misfit function has been 

decreased by 97.1% in 59 iterations. The logs of panels (c) and (d) are 

extracted along the line y = 0 in panels (a) and (b), respectively.

FIGURE 16

(a,c) Permittivity and (b,d) conductivity models obtained by multiparam-

eter inversion of the dataset FoamMetExt, using a regularization weight 

Λ = 10-11 and a scaling factor β = 0.5. The misfit function has been 

decreased by 96.5% in 101 iterations. The logs of panels (c) and (d) are 

extracted along the line y = 0 in panels (a) and (b), respectively.
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introducing some prior information in the misfit function.

The success of inverting these experimental data lets us envis-
age the inversion of on-ground GPR field data in a near future. 
The present work made us free from the inverse crime approach 
and required to accurately simulate the observed data. When 
dealing with GPR field data, we expect to face other major obsta-
cles. In particular, we may encounter difficulties for estimating 
the GPR source signature, and for designing a suitable initial 
model for starting the full waveform inversion process. The 
acquisition configuration is also very different in on-ground GPR 
applications where data are acquired only from the surface, and 
it has a strong effect on the ability of the imaging technique to 
recover the subsurface targets.

In particular, in the frame of multiparameter inversion, a par-
tial illumination tends to enhance the trade-off between param-
eters (Hak and Mulder 2010). Our previous study on synthetic 
data (Lavoué et al. 2014) suggests that multiparameter FWI can 
be performed from surface data if the information contained in 
the Hessian of the misfit function is taken into account through 

FIGURE 17

(a) Amplitude and (b) phase of observed vs. synthetic data computed in 

the final reconstructed model of Figs 15 and 16, for frequency 18 GHz 

and the source at θs = 240°.
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