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Summary 
 
We present an integrated methodology for quantitative CO2 monitoring using Bayesian formulation. A first step 
consists in full-waveform inversion and CSEM inversion solved with gradient-based inverse methods. Uncertainty 
assessment is then carried out using a posteriori covariance matrix analysis to derive velocity and resistivity maps 
with uncertainty. Then, rock physics inversion is done with semi-global optimisation methodology and uncertainty 
is propagated with Bayesian formulation to quantify the reliability of the final CO2 saturation estimates. 
 



 

 
Fifth CO2 Geological Storage Workshop 

21-23 November 2018, Utrecht, The Netherlands 

 Introduction

For large-scale CO2 storage projects, international regulations require setting up a suitable MMV (Mea-
surement, Monitoring and Verification) plan. A monitoring plan is divided into three parts: containe-
ment, conformance and contingency. Conformance monitoring requires matching modelled previsions
and monitoring measurements. Such comparisons are carried out based on some measurable quantities
that can be derived by geophysical measurements. Typically, seismic and/or CSEM (Controlled Source
ElectroMagnetic) surveys associated with proper imaging methods allow to derive CO2 saturations or
other relevant rock physics properties (Ghosh et al., 2015; Dupuy et al., 2017). Quantitative geophysi-
cal imaging uses a combination of inversion methodologies (Dupuy et al., 2016). Proper conformance
monitoring requires estimation of relevant susbsurface quantities (such as CO2 saturations). The inverse
problems associated with the first (geophysical inversion) or second step are however non-linear, highly
undetermined and non-unique. Uncertainty evaluation is therefore of critical importance. Both inver-
sions are based on Bayesian formulation (Tarantola, 2005). The first inversion step is carried out with
gradient-based local optimization while the second inversion step consists in a deterministic global opti-
mization. We propose in this work to integrate the two inversion steps to propagate uncertainty estimated
in the first step to the second inversion step.

Inversion formulation

Bayesian formulation of geophysical inverse problems is extensively described by Tarantola (2005).
Based on Bayes theorem, the solution of the inverse problem can be described by a general formulation
calculating the posterior probability distribution σσσ post of the model mmm such as:

σσσ post = cρρρ prior(mmm)L(mmm|dddobs) , (1)

where c is a constant, ρρρ prior(((mmm))) is the prior probability density function of model mmm and L(mmm|||dddobs) is
the data likelihood misfit function describing the discrepancy between observed data dddobs and modelled
data g(mmm) (mmm being the model vector and g being the forward model operator used to calculate modelled
data). Both inversion steps of our quantitative imaging workflow are using Bayesian formulation. The
first inversion step uses waveform-based imaging methodologies, for instance Full Waveform Inversion
(FWI) for seismic data. The forward problem consists in solving the wave equation for a given mode
(acoustic, elastic, viscoelastic, etc). The associated inverse problem aims at minimizing the discrepancy
between modeled and observed data. It can be derived in a least square sense and iteratively solved with
a preconditioned gradient algorithm (Romdhane and Querendez, 2014). Uncertainty analysis can be
performed based on the computation of the inverse of the Hessian, which can be interpreted as posterior
covariance matrix in a local probabilistic sense (Eliasson and Romdhane, 2017). It allows generation of
a set of equivalent models, all explaining similarly well the observed data.

The second inversion step consists in the extraction of relevant rock physics property models from the de-
rived seismic attributes. Similarly to the first step, a data fitting process is carried out between modelled
rock physics properties and observed data. The forward problem is defined by a rock physics model,
that should be calibrated or generic enough to be applicable to the dataset. In the following examples,
we use Biot-Gassmann (Biot, 1956; Gassmann, 1951) rock physics models coupled with the estimation
of an effective fluid phase by Brie equation (Brie et al., 1995). Given the low computational require-
ment of the forward model, the inverse problem can be solved with global or semi-global optimization
algorithms such as Monte-Carlo or Neighourhood Algorithm (NA) (Sambridge, 1999a). We used NA to
estimate CO2 saturation at Sleipner (Dupuy et al., 2017). In this case, the discrepancy between modelled
data g(mmm) (mmm being the model vector and g being the rock physics model set of equations) and observed
data dddobs was formulated with a scalar function C(mmm) following L2 norm. We update this L2 norm
formulation to add data covariance matrix CCCDDD describing noise statistics in input data such as:

C(mmm) =
[
(dddobs−g(mmm))T CCC−1

DDD (dddobs−g(mmm))
]
. (2)

The data covariance matrix (or prior data covariance) in this second step will be described by the poste-
rior covariance matrix analysis carried out in the first step. Concretely, a velocity model with uncertainty
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 (standard deviation) will be derived in the first inversion step and this velocity data +/- uncertainty will
be used as input in the second inversion step. We will compare results of derived rock physics properties
taking into account this prior data uncertainty or not.

Other on-going updates in the rock physics inversion step are not shown in this abstract. Spatial correla-
tion between data points (to avoid checkerboard patterns) is implemented and currently tested via global
inversion of all data points in one system instead of independent inversions for each data point. In addi-
tion, measurement of correlation and trade-off of any ensemble of inverted models (such as the ensemble
of models derived by NA) can be done a posteriori using the algorithm proposed by Sambridge (1999b).
Approximate posterior probability density is defined and importance sampled to calculate Bayesian
integrals such as posterior mean models and covariance matrices, resolution matrices and marginal dis-
tributions. Prior model probability distribution can be easily considered in this post-Bayesian analysis.

Case study for propagation of uncertainty

We consider a synthetic example representing Sleipner Utsira data (Dupuy et al., 2017), using acoustic
FWI results (P-wave velocity) and CSEM inversion results (resistivity). Prior (constant) rock physics
properties are defined from log data, laboratory measurements and regional geology knowledge. We
show examples for baseline (before CO2 injection, 1994 vintage) and monitor datasets (2008 vintage).
Before injection, we focus the rock physics inversion on rock frame properties, i.e. dry bulk modulus,
dry shear modulus and porosity. After injection, we assume that the rock frame properties are unchanged
and that the geophysical attributes are sensitive only to the fluid phase change i.e. CO2 saturation and
the way the fluids are mixed in the pore space (via Brie exponent). Inversion of rock frame properties
from P-wave velocity with and without uncertainty is shown in Figure 1. 2D sections of the 3D model
space constituted of dry bulk modulus KD, dry shear modulus GD and porosity φ show the low misfit
areas for each parameter (pink models). It is worth noting that the bulk and shear moduli show better fit
than porosity. Comparing the cases without and with uncertainties on input velocity, the low misfit area
is wider even if the convergence towards the true model is similar. That means that the average value for
model parameters is similar but the associated standard deviation is larger when there is uncertainty on
input. Inversion of CO2 saturation and Brie exponent from P-wave velocity with and without uncertainty
is shown in Figure 2. The well-known trade-off between saturation and Brie exponent is observed for
both cases even if the the low misfit area is wider in case of uncertainty on input data.

A third sensitivity test is shown in Figure 3 where CO2 saturation, Brie exponent and porosity from
P-wave velocity and resistivity with and without uncertainty. Subagjo et al. (2018) present first tests of
joint rock physics inversion at Sleipner combining FWI and CSEM inversion results. Adding resistivity
input data helps to discriminate between fluid saturation and distribution but requires estimation of
porosity in addition. Similarly to other sensitivity tests, using input data with uncertainty increases
the standard deviation of each inverted parameters but the saturation and the porosity are less affected
than the Brie exponent. Estimation of rock frame properties and of CO2 saturation and Brie exponent
for 1D profile are shown in Figure 4. These 1D log profiles are calculated from P-wave velocity with
and without uncertainty. The mean values and the uncertainty ranges (+/- one standard deviation) of
inverted parameters are plotted for both exact input data and velocity input±100 m/s. For both baseline
(inversion of KD, GD and φ ) and monitor (inversion of SCO2 and e) examples, it is important to note
that the mean values are very close no matter if there is uncertainty on the input velocity or not. The
uncertainty ranges slightly increase when the velocity uncertainty is included, more for shear modulus
than porosity for baseline case. For the monitor case, this uncertainty range is larger at specific depths
only for the case with uncertainty on input data. We notice also slight changes of the mean estimates at
the same specific depths.

Conclusions

We derive an integrated formulation for propagation of uncertainty in the full imaging workflow used
to quantify relevant CO2 monitoring properties. In our two-step formulation, both inversion steps are
formulated with Bayesian methods and the posterior uncertainty of the first step is used as prior data
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Figure 1 Inversion of dry bulk modulus KD, dry shear modulus GD and porosity φ from P-wave velocity
VP input with (a) no uncertainty and (b) ±100 m/s uncertainty. The figures give 2D sections of the 3D
model space and each model is represented by a dot with a corresponding color giving the misfit value.
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Figure 2 Inversion of CO2 saturation SCO2 and Brie exponent e from P-wave velocity VP input with (a)
no uncertainty and (b) ±100 m/s uncertainty. The figures give 2D sections of the 2D model space and
each model is represented by a dot with a corresponding color giving the misfit value.

uncertainty in the second step. The first sensitvity tests on seismic and CSEM data, both for baseline
and monitor cases, show that the uncertainty range of inverted parameter increases when the input data
is considered with uncertainty while the mean value stays similar. Globally, we can conclude that the
rock physics inversion is quite stable with respect to uncertainty in input data. Other implementations to
improve the integration of the two-steps workflow are going on.
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Figure 3 Inversion of CO2 saturation SCO2 , Brie exponent e and porosity φ from P-wave velocity VP and
resistivity Rt inputs with (a) no uncertainty and (b)±100 m/s uncertainty on VP and±5 Ω.m uncertainty
on Rt . The figures give 2D sections of the 3D model space and each model is represented by a dot with
a corresponding color giving the misfit value.
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Figure 4 (a) Inversion of dry bulk modulus KD, dry shear modulus GD and porosity φ and (b) inversion
of CO2 saturation SCO2 and Brie exponent e. Continuous blue lines stand for results with no uncertainty
on VP input while continuous black lines stand for results with ±100 m/s uncertainty on VP input. The
dashed lines gives the ranges of uncertainty for each inverted parameters i.e. ± one standard deviation.
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