1887

Abstract

Summary

The crucial aim of the present study is to investigate the possibility of using soil magnetic susceptibility (MS) for the correction of the results of erosion modelling. The studies were performed on the example of the typical chernozems of Forest-Steppe of Ukraine. We used the magnetic techniques, agrochemical, statistical, and mathematical modelling of the erosion processes. The example of the chernozem soil studies illustrated the possibility of using soil magnetic susceptibility data for the improving and correction of the results of mathematical modelling of the erosion processes. According to the obtained data we recommended to include the magnetic susceptibility measurement to the algorithm of the calculation of the soil coefficients. The soil erosion models are related to the distribution of MS values.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201903250
2019-11-12
2024-04-19
Loading full text...

Full text loading...

References

  1. Barbosa, R. S., Júnior, J.M., Barrón,V., Martins, Filho M. V., Siqueira, D. S., Peluco, R. G., ... & Silva, L. S.
    (2019). Prediction and mapping of erodibility factors (USLE and WEPP) by magnetic susceptibility in basalt-derived soils in northeastern São Paulo state, Brazil. Environmental earth sciences, 78(1), 12.
    [Google Scholar]
  2. Byndych, T.
    (2017). Using Multispectral Satellite Imagery for Parameterisation of Eroded Chernozem. Soil Science Working for a Living: Applications of soil science to present-day problems. Part II. 57–65.
    [Google Scholar]
  3. de Souza, Bahia A. S. R., Marques, J., La Scala, N., Cerri, P., Eduardo, C., & Camargo, L. A.
    (2017). Prediction and mapping of soil attributes using diffuse reflectance spectroscopy and magnetic susceptibility. Soil Science Society of America Journal, 81(6), 1450–1462.
    [Google Scholar]
  4. Gadirov, V. G., Eppelbaum, L. V., Kuderavets, R. S., Menshov, O. I., Gadirov, K. V.
    (2018). Indicative features of local magnetic anomalies from hydrocarbon deposits: examples from Azerbaijan and Ukraine. Acta Geophysica, 66(6), 1463–1483.
    [Google Scholar]
  5. Jakšík,O., Kodešová,R., Kapička,A., Klement, A., Fer, M., Nikodem, A.
    (2016). Using magnetic susceptibility mapping for assessing soil degradation due to water erosion. Soil and Water Research, 11(2), 105–113.
    [Google Scholar]
  6. Kruglov, O.
    (2012). Characteristics of the distribution of the magnetic susceptibility of typical chernozems on the slopes. Visnyk Kharkivskoho natsionalnoho ahrarnoho universytetu, 4, 66–69. (in Ukrainian).
    [Google Scholar]
  7. Kruglov, O., Menshov, O.
    (2017). To the soil magnetic susceptibility application in modern soil science. In 16th International Conference on Geoinformatics-Theoretical and Applied Aspects.
    [Google Scholar]
  8. Kutsenko, M. V.
    (2012). Geosystem bases of erosion-accumulative process regulation: geomorphological aspect. KP City printing house, Kharkov. (in Ukrainian).
    [Google Scholar]
  9. Menshov, O., Kruglov, O., Suhorada, A.
    (2012). Informativeness of indicators of soil magnetism in solving agro-geophysical and soil science problems. Visnyk nacionalnogo girnychogo universytetu, 3, 7–12. (in Ukrainian).
    [Google Scholar]
  10. Menshov, A.I., Sukhorada, A.V.
    (2012). Soil magnetism in Ukraine. Scientific Bulletin of National Mining University, 1, 15–22
    [Google Scholar]
  11. Menshov, O., Kruglov, O., Vyzhva, S., Nazarok, P., Pereira, P., & Pastushenko, T.
    (2018). Magnetic methods in tracing soil erosion, Kharkov Region, Ukraine. Studia Geophysica et Geodaetica, 62(4), 681–696.
    [Google Scholar]
  12. Peluco, R.G., Marques, Junior J., Siqueira, D.S., Pereira, G.T., Barbosa, R.S., Teixiera, D.B., Adame, C.R., Cortez, L.A.
    (2013). Suscetibilidade magnetica do solo e estimao da capacidade de suporte a aplicacao de vinhaіa. Pesq Agropec Bras, 48, 661–672.
    [Google Scholar]
  13. Pereira, P., Brevik, E.C., Oliva, M., Estebaranz, F., Depellegrin, D., Novara, A., Cerdà,A, Menshov, O.
    (2017). Goal oriented soil mapping: applying modern methods supported by local knowledge. In: Soil Mapping and Process Modeling for Sustainable Land Use Management. Elsevier, 61–83.
    [Google Scholar]
  14. Royall, D.
    , 2007. A comparison of mineral-magnetic and distributed RUSLE modeling in the assessment of soil loss on a southeastern U.S. cropland. Catena .69, 170–180.
    [Google Scholar]
  15. Santos, H. L., MarquesJ.Júnior, Matias, S. S., Siqueira, D. S., Martins, Filho M. V.
    (2013). Erosion factors and magnetic susceptibility in differet compartments of a slope in Gilbués-PI, Brazil. Engenharia Agrícola, 33(1), 64–74.
    [Google Scholar]
  16. Tyapkin, O. K., Pigulevskiy, P. I., Bilashenko, O. G.
    (2014). Formalization of geological mapping by geological-geophysical data. Scientific Bulletin of National Mining University, 2, 93–99.
    [Google Scholar]
  17. Velychko, O., Shcherbyna, S., Holovnia, M., Pigulevskiy, P.
    (2016). Relation of the level of the water in boreholes with influence of the ionosphere dynamics on results of remote comparison of time. Scientific Bulletin of National Mining University, 4, 37–45.
    [Google Scholar]
  18. Wang, H., Huo, Y., Zeng, L., Wu, X., & Cai, Y.
    (2008). A 42-yr soil erosion record inferred from mineral magnetism of reservoir sediments in a small carbonate-rock catchment, Guizhou Plateau, southwest China. Journal of Paleolimnology, 40(3), 897–921.
    [Google Scholar]
  19. Wischmeier, W. H., Smith, D. D.
    (1978). Predicting rainfall erosion losses; a guide to conservation planning. Washington: Department of Agriculture, 58 p. (Agriculture Handbook, 537).
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201903250
Loading
/content/papers/10.3997/2214-4609.201903250
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error