1887
Volume 7 Number 1
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

A large quantity of pig slurry is produced in the Murcia Province, raising serious environmental concern. Monitoring the evolution of the slurry ponds with time in the subsoil is a prime requirement for environmental safety. Our aim was to determine the temporary effects of pig slurry ponds on the subsoil in the Murcia Province to establish the degree of slurry pond infiltration in semi‐arid climates. A non‐destructive, geophysical, 2D electrical tomography technique was used to: 1) monitor the vertical movement of pig slurry into the subsoil and 2) determine the possible depth of this movement. The results of our studies showed that the method works well. Areas affected by pig slurries have, indeed, developed environmental problems over time. The method identified the lithological layers with sufficient resolution in order to study the possible pollution of the soils by the slurry, including salts. The method is also capable of monitoring seasonal changes and the time‐dependent behaviour of the polluting plume within different subsoils in the ponds.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2008033
2008-09-01
2024-04-20
Loading full text...

Full text loading...

References

  1. AlcarazF., ÁlvarezJ., DelgadoM.J., FazA. and InocencioC.1999. Recursos del medionatural. Atlas del Medio Natural de la Región de Murcia, ITGE, pp. 15–35.
    [Google Scholar]
  2. AndradesM.1996. Prácticas de edafología y climatología. Universidad de la Rioja.
    [Google Scholar]
  3. BernardJ.2003. Short note on the depth of investigation of electrical methods. IRIS Instruments, Orleans, France.
    [Google Scholar]
  4. BinleyA. and KemnaA.2006. DC resistivity and induced polarization methods. In: Hydrogeophysics (eds Y.Rubin and S.S.Hubbard ), pp. 129–156. Springer.
    [Google Scholar]
  5. BowerC.A. and WilcoxL.V.1965. Soluble salts. In: Methods of Soil Analysis. American Society of Agronomy (ed. C.A.Black), pp. 933–940. Madison, Wisconsin, USA.
    [Google Scholar]
  6. BuselliG. and LuK.1999. Applications of some new techniques to detect groundwater contamination at mine tailings dams. Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems, Oakland, CA, pp. 507–516.
    [Google Scholar]
  7. CasasA., HimiM. and TapiasJ.C.2005. Sensibility analysis of electrical imaging method for mapping aquifer vulnerability to pollutants. Near Surface 2005, Palermo, Italy, Extended Abstracts, P012.
    [Google Scholar]
  8. ChambersJ.E., OgilvyR.D., KurasO., CrippsJ.C. and MeldrumP.L.2002. 3D electrical imaging of known targets at a controlled environmental test site. Environmental Geology41, 690–704.
    [Google Scholar]
  9. ChambersJ., OgilvyR. and MeldrumP.1999. 3D resistivity imaging of buried oil‐ and tar contaminated waste deposits. European Journal of Environmental and Engineering Geophysics4, 3–14.
    [Google Scholar]
  10. DahlinT., BernstoneC. and LokeM.H.2002. A 3‐D resistivity investigation of a contaminated site at Lernacken, Sweden. Geophysics67, 1692–1700.
    [Google Scholar]
  11. DahlinT. and ZhouB.2004. A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophysical Prospecting52, 379–398. doi:10.1111/j.1365‐2478.2004.00423.x
    [Google Scholar]
  12. DailyW. and RamirezA.1995. Electrical resistance tomography during in‐situ trichloroethylene remediation at the Savannah River Site. Journal of Applied Geophysics33, 239–249.
    [Google Scholar]
  13. DailyW., RamirezA., BinleyA. and LaBrecqueD.2006. Electrical resistence tomography –Theory and practice. In: Near‐Surface Geophysics (eds D.K.Butler ), pp. 525–550. SEG.
    [Google Scholar]
  14. DailyW., RamirezA., LaBrecqueD. and BarberW.1995. Electrical resistance tomography experiments at the Oregon Graduate Institute. Journal of Applied Geophysics33, 227–237.
    [Google Scholar]
  15. de LimaO.A.L., SatoH.K. and PorsaniM.J.1995. Imaging industrial contaminant plumes with resistivity techniques. Journal of Applied Geophysics34, 93–108.
    [Google Scholar]
  16. EdwardsL.S.1977. A modified pseudosection for resistivity and induced‐polarization Geophysics42, 1020–1036.
    [Google Scholar]
  17. Espinosa‐GonzalezA.B.2006. Determinación de contactos en el subsuelo mediante interpretación de perfiles de tomografia eléctrica. PhD thesis, University of Burgos, Spain.
    [Google Scholar]
  18. FAO‐ISRIC
    FAO‐ISRIC2006. Guidelines for Soil Description, 4th edn. Food and Agriculture Organization of the United Nations – ISRIC World Soil Information
    [Google Scholar]
  19. FazC.A., TortosaJ.L., AndujarM., LlonaM., LoberaJ.B., PalopA.et al.2005. Application of pig slurries in the Guadalentin valley for broccoli and watermelon production: Preliminary results. Advances in Geoecology36, 133–148.
    [Google Scholar]
  20. JanikM. and KrummelH.2006. Geoelectrical methods: 2D measurements. In: Groundwater Geophysics (ed. R.Kirsch), pp. 109–117. Springer.
    [Google Scholar]
  21. ITGE (Instituto Tecnológico Geominero de España)
    ITGE (Instituto Tecnológico Geominero de España) . 1993a. Mapa geológico de España. Escala 1:50.000. Hoja954, 26–38.
    [Google Scholar]
  22. ITGE (Instituto Tecnológico Geominero de España)
    ITGE (Instituto Tecnológico Geominero de España)1993b. Mapa geológico de España. Escala 1:50.000. Hoja975, 25–39.
    [Google Scholar]
  23. LlonaM.2005. Utilización agronómica de purines de cerdo en broccoli y sandía en condiciones mediterráneas semiáridas. Influencia en el sistema suelo‐planta. PhD thesis. Universidad Politécnica de Cartagena.
    [Google Scholar]
  24. LoberaJ.B., MartínezP., FerrándezF. and MartínJ.1998. Reutilización agronómica de los purines de cerdo. Serie técnica y de estudios no. 21, Comunidad Autónoma de la Región de Murcia, Consejería de Agricultura Agua y Medio Ambiente.
    [Google Scholar]
  25. LokeM.H.2002. RES2DINV ver. 3.50. Rapid 2‐D resistivity and IP inversion using the least squares method.
  26. LuK., MacnaeJ. and BuselliJ.1999. A study of a two‐dimensional resistivity and IP array. Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems, Oakland, CA, USA, pp. 951–960.
    [Google Scholar]
  27. MAPYA (Spanish Ministry of Agriculture, Fisheries and Food)
    MAPYA (Spanish Ministry of Agriculture, Fisheries and Food)2006. Guía de mejores técnicas disponibles del sector porcino. guiamtdssec‐torporcino.pdf, Madrid. www.mapya.es.
    [Google Scholar]
  28. Martínez‐PagánP.2006. Aplicación de diferentes técnicas no destructivas de prospección geofísica a problemas relacionados con contaminación ambiental producida por diferentes actividades antrópicas en la Región de Murcia. PhD thesis, Technical University of Cartagena.
    [Google Scholar]
  29. Martínez‐PagánP., AracilE. and FazA.2004. Técnicas geoeléctricas para la detección “monitorización de filtraciones en embalses. Revista Ingeopres133, 28–30.
    [Google Scholar]
  30. Martínez‐PagánP., FazA., AracilE. and RiosA.C.2006. Aplicación de técnicas geofísicas y geoquímicas a diferentes problemas relacionados con la contaminación ambiental en balsas de purines de la Región de Murcia (España). Comunicación Oral, 5a Asamblea Hispano‐Portuguesa de Geodesia y Geofísica, Sevilla, Spain.
    [Google Scholar]
  31. Martínez‐PagánP., FazA., FisherT., AracilE. and MaruriU.2005. Potential use of 2D electrical tomography in slurry ponds to establish environmental pollution. Near Surface 2005, Palermo, Italy, Expanded Abstracts.
    [Google Scholar]
  32. NavarroS. and NavarroG.2000. Química Agrícola. Mundi‐Prensa, Madrid.
    [Google Scholar]
  33. OgilvyR., MeldrumP. and ChambersJ.1999. Imaging of industrial waste deposits and buried quarry geometry by 3‐D resistivity tomography. European Journal of Environmental and Engineering Geophysics3, 103–113.
    [Google Scholar]
  34. OlayinkaA.I. and YaramanciU.1999. Choice of the best model in 2‐D geoelectrical imaging: case study from a waste dump site. European Journal of Environmental and Engineering Geophysic3, 221–244.
    [Google Scholar]
  35. ParkS.1998. Fluid migration in the vadose zone from 3‐D inversion of resistivity monitoring data. Geophysics63, 41–51.
    [Google Scholar]
  36. PazdirekO. and BlahaV.1996. Examples of resistivity imaging using me‐100 resistivity field acquisition system. 58th EAGE meeting, Amsterdam, the Netherlands, Expanded Abstracts, P050.
    [Google Scholar]
  37. PeechM.1965. Hidrogen‐ion activity. In: Methods of Soil Análisis (ed. C.A.Black), pp. 914–916. American Society of Agronomy, Madison, Wisconsin, USA.
    [Google Scholar]
  38. Rodríguez‐EstrellaT.1987. Problemática de la presencia de gases en las aguas subterráneas del Valle del Guadalentín (Murcia). IV Simposio de Hidrogeología, Palma de Mallorca, pp. 117–137.
    [Google Scholar]
  39. Rodríguez‐EstrellaT.1998. Vunerabilidad y riesgo de contaminación de acuíferos, por la acción de purines, en la Provincia de Valencia. Universidad de Valencia – Universidad de Murcia.
    [Google Scholar]
  40. RoyA. and ApparaoA.1971. Depth of investigation in direct current methods. Geophysics36, 943–959.
    [Google Scholar]
  41. SchröderJ.J., ScholefieldD., CabralF. and HofmansG.2004. The effects of nutrients losses from agriculture on ground and surface water quality: the position of science in developing indicators for regulation. Environmental Science & Policy7, 15–23.
    [Google Scholar]
  42. Senos‐MatiasM.J., Marques da SilvaM., GoncalvesL., PeraltaC., GrangeiaC. and MartinhoE.2004. An investigation into the use of geophysical methods in the study of aquifer contamination by graveyards. Near Surface Geophysics3, 131–136.
    [Google Scholar]
  43. SlaterL., BinleyA.M., DailyW. and JohnsonR.2000. Cross‐hole electrical imaging of a controlled saline tracer injection. Journal of Applied Geophysics44, 85–102.
    [Google Scholar]
  44. Soil Survey Staff
    Soil Survey Staff2006. Keys to Soil Taxonomy, 8th edn. USDA, Washington, DC.
    [Google Scholar]
  45. ZanuzziA.2007. Reduction of environmental impacts associated to heavy metal polluted soils through the use of anthropogenic wastes. PhD thesis, Technical University of Cartagena, Department of Agrarian Science and Technology.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2008033
Loading
/content/journals/10.3997/1873-0604.2008033
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error