1887
Volume 37 Number 7
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

The possibilities for reconstructing seismic velocity distributions containing low‐velocity anomalies by iterative tomographic methods are examined studying numerical and analogue 2D model data. The geometrical conditions of the model series were designed to generalize the geometrical characteristics of a typical cross‐hole tomographic field case. Models with high (30%) and low (8%) velocity contrasts were realized. Traveltimes of 2D ultrasonic P‐waves, determined for a dense net of raypaths across each model, form the analogue data set. The numerical data consists of traveltimes calculated along straight raypaths. Additionally, a set of curved‐ray traveltimes was calculated for a smoothed version of the high‐contrast model.

The Simultaneous Iterative Reconstruction Technique (SIRT) was chosen from the various tomographic inversion methods. The abilities of this standard procedure are studied using the low‐contrast model data. The investigations concentrate on the resolving power concerning geometry and velocity, and on the effects caused by erroneous data due to noise or a finite time precision. The grid spacing and the source and receiver patterns are modified. Smoothing and slowness constraints were tested. The inversion of high‐contrast analogue model data shows that curved raypaths have to be considered. Hence, a ray‐tracing algorithm using velocity gradients was developed, based on the grid structure of the tomographic inversion. This algorithm is included in the SIRT‐process and the improvements concerning anomaly localization, resolution and velocity reconstruction are demonstrated. Since curved‐ray tomography is time‐consuming compared with straight‐ray SIRT, it is necessary to consider the effects of grid spacing, ray density, slowness constraints and the

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2478.1989.tb02231.x
2006-04-27
2024-04-26
Loading full text...

Full text loading...

References

  1. Aki, K. and Richards, P.1980. Quantitative Seismology ‐ Theory and Methods, Vol. II, 675–711. W. H. Freeman & Co.
    [Google Scholar]
  2. Anderson, D.L. and Dziewonski, A.M.1984. Seismische Tomographic: 3D‐Bilder des Erdmantels. Spektrum der Wissensckaft, No. 12, 62–71.
    [Google Scholar]
  3. Balanis, C.A., Hill, H.W. and Freeland, K.A.1983. ART and SIRT Correction Factors in Geotomography. URSI Commission F Symposium, Wepion‐Namur, Belgium .
    [Google Scholar]
  4. Behrens, J. and Dresen, L.1982. Zwei‐ und dreidimensionale analoge modellseismische Untersuchungen ‐ Interpretationshilfe bei der Erkundung von Lagerstättenstrukturen, In: Modellverfahren bei der Interpretation seismischer Daten, vol. 2‐2. Mintrop‐Seminar: W.Budach , L.Dresen , J.Fertig and H.Rüter (eds), Unikontakt , Ruhr‐Universität Bochum, 295–432.
    [Google Scholar]
  5. Behrens, J. and Waniek, L.1972. Modellseismik (model seismology). Journal of Geophysics38, 1–44.
    [Google Scholar]
  6. Bishop, T.N., Bube, K.P., Cutler, R.T., Langan, R.T., Love, P.L., Resnick, J.R., Shuey, R.T., Spindler, D.A. and Wyld, H.W.1985. Tomographic determination of velocity and depth in laterally varying media. Geophysics50, 902–923.
    [Google Scholar]
  7. Bois, P., LaPorte, M., Lavergne, M. and Thomas, G.1971. Essai de determination automatique des vitesses sismiques. Geophysical Prospecting19, 42–83.
    [Google Scholar]
  8. Bregman, N.D.1986, Tomographic inversion of crosshole seismic data. Research in Applied Geophysics, 39, Geophysics Laboratory, Dept. of Physics, University of Toronto.
    [Google Scholar]
  9. Brooks, R.A. and Di Chiro, G.1976. Principles of computer assisted tomography (CAT) in radiographic and radioisotopic imaging. Physics in Medicine and Biology2, 689–732.
    [Google Scholar]
  10. Bube, K.P. and Resnick, J.R.1984. Well‐determined and poorly determined features in seismic tomography. 54th SEG meeting, Atlanta . Expanded Abstracts, 717–719.
    [Google Scholar]
  11. Bube, K.P., Jovanovich, D.B., Langan, R.T., Resnick, J.R., Shuey, R.T., Spindler, D.A.1985. Well‐determined and poorly determined features in seismic reflection tomography: Part II. 55th SEG meeting, Washington . Expanded Abstracts, 608–610.
    [Google Scholar]
  12. Budinger, T.F. and Gullberg, G.T.1974. Three‐dimensional reconstruction in nuclear emission imaging. IEEE Transactions on Nuclear Science212–20.
    [Google Scholar]
  13. ČErvény, V.1985. Ray synthetic seismograms for complex two‐dimensional and three‐dimensional structures. Journal of Geophysics58, 2–26.
    [Google Scholar]
  14. De Rosier, D.J. and Klug, A.1968. Reconstruction of three‐dimensional structures from electron micrographs. Nature217, 130–138.
    [Google Scholar]
  15. Dines, K.A. and Lytle, R.J.1979. Computerized geophysical tomography. Proceedings of the IEEE67, 1065–1078.
    [Google Scholar]
  16. Gelbke, C., Miranda, F. and Sattel, G.1987. Results of a seismic transmission tomographic survey in the Grimsel rock laboratory, Proceedings Second International Symposium on Borehole Geophysics for Minerals, Geotechnical, and Ground Water Applications (MGLS‐SPWLA), Golden , Colorado , 273–298.
    [Google Scholar]
  17. Gilbert, P.1972. Iterative methods for the three‐dimensional reconstruction of an object from projections. Journal of Theoretical Biology36, 105–117.
    [Google Scholar]
  18. Gordon, R., Bender, R. and Herman, G.T.1970. Algebraic reconstruction techniques for three‐dimensional electron microscopy and X‐ray photography. Journal of Theoretical Biology29, 471–481.
    [Google Scholar]
  19. Gustavsson, M., Israelson, H., Ivansson, S., Moren, P. and Pihl, J.1982. A seismic cross‐hole experiment in crystalline rock. Proceedings of a workshop on Geophysical Investigations in connection with Geological Disposal of Radioactive Waste, Nuclear Energy Agency, Ottawa .
    [Google Scholar]
  20. Hermann, L., Dianiska, L. and Verböci, J.1982. Curved ray algebraic reconstruction technique applied in mining. Geophysics, Geophysical Institute of Hungary, Eötvös Loránd. Geophysical Transactions of the28/1, 33–46.
    [Google Scholar]
  21. Horn, B.K.P.1978. Density reconstruction using arbitrary ray‐sampling schemes. Proceedings of the IEEE66, 551–562.
    [Google Scholar]
  22. Ivansson, S.1986. Seismic borehole tomography‐theory and computational methods. Proceedings of the IEEE74, 328–338.
    [Google Scholar]
  23. Krajewski, C.1987. Modelluntersuchungen zur Ortung seismischer Niedergeschwindigkeits‐anomalien mit iterativen tomographischen Verfahren, Diplomarbeit, Ruhr‐Universität Bochum.
    [Google Scholar]
  24. Lager, D.L. and Lytle, R.J.1977. Determining a subsurface electromagnetic profile from high‐frequency measurements by applying reconstruction technique algorithms. Radio Science12, 249–260.
    [Google Scholar]
  25. Mason, I.M.1981. Algebraic reconstruction of a two‐dimensional velocity inhomogeneity in the High Hazels seam of Thoresby colliery. Geophysics46, 298–308.
    [Google Scholar]
  26. Meister, J. and Dresen, L.1987. Hybrid seismic modelling: a technique of combining physical and computer methods for vertical wave incidence. Geophysical Prospecting35, 815–831.
    [Google Scholar]
  27. Merserau, R.M. and Oppenheim, A.V.1974. Digital reconstruction of multi‐dimensional signals from their projections. Proceedings of the IEEE62.
    [Google Scholar]
  28. Neumann, G.1981. Die Bestimmung lateraler Inhomogenitäten in der Seismik durch Inversion von Laufzeitanomalien. Dissertation, TU Berlin .
    [Google Scholar]
  29. O'Brien, P.N.S. and Symes, M.P.1971. Model seismology. Reports on Progress in Physics34, 697–764.
    [Google Scholar]
  30. Radcliff, R.D., Balanis, C.A. and Hill, H.W.1984. A stable geotomography technique for refractive media. IEEE Transactions on Geoscience and Remote Sensing22, 698–703.
    [Google Scholar]
  31. Radon, J.1917. Ober die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Berichte Sächsische Akademie der Wissenschaften69, 262–277.
    [Google Scholar]
  32. Rogers, P.G. and Edwards, S.A.1987. Iterated projection extrapolation of Radon‐transformed data based on the Paley‐Wiener theorem. IEEE Transactions on Acoustics, Speech and Signal Processing. Preprint.
    [Google Scholar]
  33. Rüter, H. and Gelbke, G.1986. Seismische Tomographie. In: Seismik auf neuen Wegen, vol. 6‐6. Mintrop‐Seminar: W.Budach , L.Dresen , J.Fertig and H.Rüter (eds), Unikontakt , Ruhr‐Universität Bochum, 207–242.
    [Google Scholar]
  34. Wong, J., Hurley, P. and West, G.F.1983. Crosshole seismology and seismic imaging in crystalline rocks. Geophysical Research Letters10, 686–689.
    [Google Scholar]
  35. Worthington, M.H.1984. An introduction to geophysical tomography. First Break2, (11), 20–26.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2478.1989.tb02231.x
Loading
  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error