1887
Volume 51, Issue 2
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Fluid flow in many hydrocarbon reservoirs is controlled by aligned fractures which make the medium anisotropic on the scale of seismic wavelength. Applying the linear‐slip theory, we investigate seismic signatures of the effective medium produced by a single set of ‘general’ vertical fractures embedded in a purely isotropic host rock. The generality of our fracture model means the allowance for coupling between the normal (to the fracture plane) stress and the tangential jump in displacement (and vice versa). Despite its low (triclinic) symmetry, the medium is described by just nine independent effective parameters and possesses several distinct features which help to identify the physical model and estimate the fracture compliances and background velocities. For example, the polarization vector of the vertically propagating fast shear wave S and the semi‐major axis of the S‐wave normal‐moveout (NMO) ellipse from a horizontal reflector always point in the direction of the fracture strike. Moreover, for the S‐wave both the vertical velocity and the NMO velocity along the fractures are equal to the shear‐wave velocity in the host rock.

Analysis of seismic signatures in the limit of small fracture weaknesses allows us to select the input data needed for unambiguous fracture characterization. The fracture and background parameters can be estimated using the NMO ellipses from horizontal reflectors and vertical velocities of P‐waves and two split S‐waves, combined with a portion of the P‐wave slowness surface reconstructed from multi‐azimuth walkaway vertical seismic profiling (VSP) data. The stability of the parameter‐estimation procedure is verified by performing non‐linear inversion based on the exact equations.

Loading

Article metrics loading...

/content/journals/10.1046/j.1365-2478.2003.00358.x
2003-03-14
2024-04-19
Loading full text...

Full text loading...

References

  1. AlfordR.M.1986. Shear data in the presence of azimuthal anisotropy. 56th SEG meeting, Houston, USA, Expanded Abstracts,476–479.
  2. BakulinA., GrechkaV. and TsvankinI.2000a. Estimation of fracture parameters from reflection seismic data. Part I: HTI model due to a single fracture set.Geophysics65, 1788–1802.
    [Google Scholar]
  3. BakulinA., GrechkaV. and TsvankinI.2000b. Estimation of fracture parameters from reflection seismic data. Part II: Fractured models with orthorhombic symmetry.Geophysics65, 1803–1817.
    [Google Scholar]
  4. BakulinA., GrechkaV. and TsvankinI.2000c. Estimation of fracture parameters from reflection seismic data. Part III: Fractured models with monoclinic symmetry.Geophysics65, 1818–1830.
    [Google Scholar]
  5. BakulinA., GrechkaV. and TsvankinI.2002. Seismic inversion for the parameters of two orthogonal fracture sets in a VTI background medium.Geophysics67, 292–299.
    [Google Scholar]
  6. BergE., HoodJ. and FryerG.1991. Reduction of the general fracture compliance matrix Z to only five independent elements.Geophysical Journal International107, 703–707.
    [Google Scholar]
  7. ContrerasP., GrechkaV. and TsvankinI.1999. Moveout inversion of P‐wave data for horizontal transverse isotropy.Geophysics64, 1219–1229.
    [Google Scholar]
  8. GrechkaV., ContrerasP. and TsvankinI.2000. Inversion of normal moveout for monoclinic media.Geophysical Prospecting48, 577–602.
    [Google Scholar]
  9. GrechkaV., TheophanisS. and TsvankinI.1999. Joint inversion of P‐ and PS‐waves in orthorhombic media: theory and a physical‐modeling study.Geophysics64, 146–161.
    [Google Scholar]
  10. GrechkaV. and TsvankinI.1998. 3‐D description of normal moveout in anisotropic inhomogeneous media.Geophysics63, 1079–1092.
    [Google Scholar]
  11. GrechkaV. and TsvankinI.1999. 3‐D moveout inversion in azimuthally anisotropic media with lateral velocity variation: theory and a case study.Geophysics64, 1202–1218.
    [Google Scholar]
  12. GrechkaV. and TsvankinI.2002. PP + PS = SS.Geophysics67, 1961–1971.
    [Google Scholar]
  13. GrechkaV., TsvankinI. and CohenJ.K.1999. Generalized Dix equation and analytic treatment of normal‐moveout velocity for anisotropic media.Geophysical Prospecting47, 117–148.
    [Google Scholar]
  14. GuestS., VanDerKolkC. and PottersH.1998. The effect of fracture filling fluids on shear‐wave propagation. 68th SEG meeting, New Orleans, USA, Expanded Abstracts,948–951.
  15. HsuC.‐J. and SchoenbergM.1993. Elastic waves through a simulated fractured medium.Geophysics58, 964–977.
    [Google Scholar]
  16. HudsonJ.A.1980. Overall properties of a cracked solid.Mathematical Proceedings of the Cambridge Philosophical Society88, 371–384.
    [Google Scholar]
  17. HudsonJ.A.1981. Wave speeds and attenuation of elastic waves in material containing cracks.Geophysical Journal of the Royal Astronomical Society64, 133–150.
    [Google Scholar]
  18. HudsonJ.A.1988. Seismic wave propagation through material containing partially saturated cracks.Geophysical Journal92, 33–37.
    [Google Scholar]
  19. HudsonJ.A., LiuE. and CrampinS.1996. Transmission properties of a plane fault.Geophysical Journal International125, 559–566.
    [Google Scholar]
  20. LiuE., HudsonJ.A. and PointerT.2000. Equivalent medium representation of fractured rock.Journal of Geophysical Research105(B2), 2981–3000.
    [Google Scholar]
  21. MolotkovL.A. and BakulinA.V.1997. An effective model of a fractured medium with fractures modeled by the surfaces of discontinuity of displacements.Journal of Mathematical Sciences86(3), 2735–2746.
    [Google Scholar]
  22. NakagawaS., NiheiK.T. and MyerL.R.2000. Shear‐induced conversion of seismic wave across single fractures.International Journal of Rock Mechanics and Mining Sciences37(1–2), 203–218.
    [Google Scholar]
  23. Pyrak‐NolteL.J., MyerL.R. and CookN.G.W.1990a. Transmission of seismic waves across single natural fractures.Journal of Geophysical Research95(B6), 8617–8638.
    [Google Scholar]
  24. Pyrak‐NolteL.J., MyerL.R. and CookN.G.W.1990b. Anisotropy in seismic velocities and amplitudes from multiple parallel fractures.Journal of Geophysical Research95(B7), 11345–11358.
    [Google Scholar]
  25. RügerA.1997. P‐wave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry.Geophysics62, 713–722.
    [Google Scholar]
  26. RügerA. and TsvankinI.1997. Using AVO for fracture detection: analytic basis and practical solutions.The Leading Edge10, 1429–1434.
    [Google Scholar]
  27. SayersC. and RickettJ.E.1997. Azimuthal variation in AVO response for fractured gas sands.Geophysical Prospecting45, 165–182.
    [Google Scholar]
  28. SchoenbergM.1980. Elastic wave behavior across linear slip interfaces.Journal of Acoustical Society of America68, 1516–1521.
    [Google Scholar]
  29. SchoenbergM.1983. Reflection of elastic waves from periodically stratified media with interfacial slip.Geophysical Prospecting31, 265–292.
    [Google Scholar]
  30. SchoenbergM. and DoumaJ.1988. Elastic wave propagation in media with parallel fractures and aligned cracks.Geophysical Prospecting36, 571–590.
    [Google Scholar]
  31. SchoenbergM. and HelbigK.1997. Orthorhombic media: modeling elastic wave behavior in a vertically fractured earth.Geophysics62, 1954–1974.
    [Google Scholar]
  32. SchoenbergM. and SayersC.1995. Seismic anisotropy of fractured rock.Geophysics60, 204–211.
    [Google Scholar]
  33. ThomsenL.1995. Elastic anisotropy due to aligned cracks in porous rock.Geophysical Prospecting43, 805–830.
    [Google Scholar]
  34. TodS.R. and HudsonJ.A.2001. Continuity conditions for a fault consisting of obliquely aligned cracks.Geophysical Journal International144, 679–684.
    [Google Scholar]
  35. TsvankinI.1997a. Reflection moveout and parameter estimation for horizontal transverse isotropy.Geophysics62, 614–629.
    [Google Scholar]
  36. TsvankinI.1997b. Anisotropic parameters and P‐wave velocity for orthorhombic media.Geophysics62, 1292–1309.
    [Google Scholar]
  37. TsvankinI.2001. Seismic Signatures and Analysis of Reflection Data in Anisotropic Media. Elsevier Science Publishing Co.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1046/j.1365-2478.2003.00358.x
Loading
/content/journals/10.1046/j.1365-2478.2003.00358.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error