1887
Volume 38 Number 3
  • E-ISSN: 1365-2478

Abstract

A

First breaks of 2D deep reflection data were used to construct velocity‐depth models for improved static corrections to a deeper datum level and for geological interpretations. The highly redundant traveltime data were automatically picked and transformed directly into a velocity‐depth model by maximum depth methods such as the Giese‐ and the Slichter‐method. Comparisons with the results of synthetic calculations and a tomographic approach using iterative inversion methods (ART, SIRT) showed that maximum depth methods provide reliable velocity models as a basis for the computation of static corrections. These methods can economically be applied during data acquisition in the field. They provide particularly long‐period static anomalies, which are of the order of 20–40 ms (0.5‐1 wavelength) within CMP gathers of an example of a deep reflection profile in SW‐Germany sited on crystalline basement. Reprocessing of this profile, which was aimed at the comparison between the effects of the originally used and the new statics, did not result in dramatically improved stacking quality but showed a subtle influence on the detailed appearance of deep crustal events.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2478.1990.tb01844.x
2006-04-27
2024-04-26
Loading full text...

Full text loading...

References

  1. Aki, K. and Richards, P.G.1980. Quantitative Seismology: Theory and Methods, Vol. II. W. H. Freeman and Co.
    [Google Scholar]
  2. Alter, B.1985. In situ velocity estimates for shallow crystalline rocks in the Adirondack Mountains, New York and the Laramie Range, Wyoming. Bulletin of the Seismological Society of America75, 1363–1369.
    [Google Scholar]
  3. ČErvený, V. and Pŝenĉík, I.1983. 2D seismic ray package. Charles University, Prague .
    [Google Scholar]
  4. De Amorim, W.N., Hubral, P. and Tygel, M.1987. Computing field statics with the help of seismic tomography. Geophysical Prospecting35, 907–919.
    [Google Scholar]
  5. dekorp Research Group.
    dekorp Research Group.1985. First results and preliminary interpretation of deep reflection seismic recordings along profile dekorp 2‐south. Journal of Geophysics57, 37–163.
    [Google Scholar]
  6. dekorp Research Group.
    dekorp Research Group.1988. Results of the dekorp4/ktb Oberpfalz deep seismic reflection investigations. Journal of Geophysics62, 69–101.
    [Google Scholar]
  7. Eisbacher, G., Luschen, E. and Wickert, F.1989. Crustal‐scale thrusting and extension in the Hercynian Schwarzwald and Vosges, Central Europe. Tectonics8, 1–21.
    [Google Scholar]
  8. Firbas, P.1981. Inversion of traveltime data for laterally heterogeneous velocity structure‐linearization approach. Geophysical Journal of the Royal Astronomical Society67, 189–198.
    [Google Scholar]
  9. Giese, P.1976. Depth calculation. Explosion Seismology in Central Europe. P.Giese , C.Prodehl , A.Stein (eds), 146–161. Springer‐Verlag, Inc.
    [Google Scholar]
  10. Gilbert, P.1972. Iterative methods for the three dimensional reconstruction of an object from projections. Journal of Theoretical Biology36, 105–117.
    [Google Scholar]
  11. Gordon, R.1974. A tutorial on ART. IEEE Transactions in Nuclear ScienceNS21, 78–93.
    [Google Scholar]
  12. Hagedoorn, G.J.1959. The plus‐minus method of interpreting seismic refraction sections. Geophysical Prospecting7, 158–182.
    [Google Scholar]
  13. Hampson, D. and Russell, B.1988. First‐break interpretation using generalized linear inversion. Inversion of Geophysical Data , L. R.Lines (ed.), Society of Exploration Geophysics, Geophysics reprint series, No. 9, 96–110. Reprinted fro. Journal of the Canadian Society of Exploration Geophysics 20, 40–54.
    [Google Scholar]
  14. Herman, G.T.1980. Image Reconstruction from Projections; The Fundamentals of Computerized Tomography. Academic Press Inc.
    [Google Scholar]
  15. Krey, Th.1978. Seismic stripping helps unravel deep reflections. Geophysics43, 899–911.
    [Google Scholar]
  16. Krohe, A. and Eisbacher, G.1988. Oblique crustal detachment in the Variscan Schwarz‐wald, Southwestern Germany. Geologische Rundschau77, (1), 25–43.
    [Google Scholar]
  17. Lüschen, E., Wenzel, F., Sandmeier, K.‐J., Menges, D., Ruhl, Th., Stiller, M., Janoth, W., Keller, F., Söllner, W., Thomas, R., Krohe, A., Stenger, R., Fuchs, K., Wilhelm, H. and Eisbacher, G.1987. Near‐vertical and wide‐angle seismic surveys in the Black Forest, SW Germany. Journal of Geophysics62, 1–30.
    [Google Scholar]
  18. Mayrand, L.J., Green, A.G. and Milkereit, B.1987. A quantitative approach to bedrock velocity resolution and precision: The Lithoprobe Vancouver Island experiment. Journal of Geophysical Research92, (B2), 4837–4845.
    [Google Scholar]
  19. Milkereit, B.1987. Decomposition and inversion of seismic data ‐ an instantaneous slowness approach. Geophysical Prospecting35, 875–894.
    [Google Scholar]
  20. Palmer, D.1981. An introduction to the generalized reciprocal method of seismic refraction interpretation. Geophysics46, 1508–1518.
    [Google Scholar]
  21. Rogers, A.W.1981. Determination of static corrections. Developments in Geophysical Exploration Methods, A.A.Fitch (ed.), Vol. 2, 1–36. Applied Science Publishers.
    [Google Scholar]
  22. Romanov, M.E. and Alekseev, A.S.1980. A characteristic method for numerical solution of the inverse kinematic seismic problems. Journal of Geophysics48, 173–180.
    [Google Scholar]
  23. Rühl, Th.1987. Tauchwellen‐Tomographie für Stripping‐Korrekturen und geologische Interpretationen bei den reflexionsseismischen KTB‐Profilen im Schwarzwald. Diploma thesis, University of Karlsruhe.
  24. Schmoll, J., Bittner, R., Dürbaum, H.‐J., Heinrichs, T., Meissner, R., Reichert, C, Rühl, T. and Wiederhold, H.1989. Oberpfalz deep seismic reflection survey and velocity studies. In: Exploration of the Deep Continental Crust, H.‐J.Behr and B.Raleigh (eds). Springer‐Verlag, Inc.
    [Google Scholar]
  25. Slichter, L.B.1932. The theory of the interpretation of seismic travel time curves in horizontal structures. Physics6, 273–295.
    [Google Scholar]
  26. Wenzel, F.1988. Processing of wide‐angle Vibroseis data. Geophysics53, 1303–1310.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2478.1990.tb01844.x
Loading
  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error