1887
Volume 8 Number 2
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

Large area integrated soil moisture measurement results are often required for meteorological studies as well as for geological, agricultural and natural disaster research. Commonly used sensors measure the soil moisture locally and exhibit a strong spatial variability due to the heterogeneity of most land surfaces.

The new ‘Free Line Sensing’ technology uses existing high‐voltage power lines to detect variations in soil moisture below the lines. The electromagnetic field of an additional radio‐frequency signal in the range of 50–500 kHz on the line is influenced by changes in the electric properties of the soil, e.g., after rainfall. This has been simulated using high‐frequency software, the result being that variations of electrical conductivity or dielectric coefficient of the soil will lead to a measurable effect with power line sections extending over several kilometres.

Measurements have been conducted on a 13 km long high‐voltage power line. The resulting signal is evaluated with respect to amplitude and phase. Measurement data demonstrate the capability of the ‘Free Line Sensor’ to monitor the integrated soil moisture of the Earth’s surface and near subsurface over the area covered by the power line. The resulting signal of the ‘Free Line Sensor’ strongly responds to precipitation events and the following drying of the soil. Comparison with soil moisture data obtained from gravimetric drying of soil samples reveals a good agreement.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2009059
2009-11-01
2024-03-29
Loading full text...

Full text loading...

References

  1. Ansoft2003. www.ansoft.com.
  2. ArchieG.E.1942. The electrical resistivity log as an aid in determining some reservoir characteristics. Petroleum Transactions of AIME146, 54–62.
    [Google Scholar]
  3. BaghadadiN., HolahN. and ZribiM.2006. Soil moisture estimation using multi‐incidence and multi‐polarization ASAR data. International Journal of Remote Sensing27, 1907–1920.
    [Google Scholar]
  4. BeckerR., BiebersteinA., HübnerC., NüeschR., SchädelW., ScheuermannA.et al.2003. Non‐destructive in situ and online measurements of soil physical parameters. Soil and Rock America 2003, 12th Panamerican Conference on Soil Mechanics and Geotechnical Engineering and 39th US Rock Mechanics Symposium, Cambridge, Massachusetts, USA, 22–26 June.
    [Google Scholar]
  5. BittelliM. and FluryM.2004. Use of dielectric spectroscopy to estimate ice content in frozen porous media. Water Resources Research40, W04212. doi:10.1029/2003WR002343
    [Google Scholar]
  6. BrandelikA. and HübnerC.2000. Subsurface sensing, subsurface aquametry. Subsurface Sensing Technologies and Applications1, 365–376.
    [Google Scholar]
  7. BrandelikA. and HübnerC.2005. Verfahren und eine Vorrichtung zur Bestimmung von Eigenschaften des Erdreichs. German Patent No. 10253772.
    [Google Scholar]
  8. BrandelikA., HuebnerC. and SchuhmannR.1998. Moisture sensor for large area layers. German Patent No. 4432687, European Patent No. 0804724 and US Patent No. 5942904.
  9. CarlinH.1956. The scattering matrix in network theory. Circuit Theory, IRE Transactions3, 88–97.
    [Google Scholar]
  10. CaroF. and BrouersF.1989. Dielectric anomaly of porous media: The role of multipolar interactions. Physical Review B40, 3261–3265.
    [Google Scholar]
  11. GuptaS.C. and HanksR.J.1972. Influence of water content on electrical conductivity of the soil. Soil Science Society of America Journal36, 855–857.
    [Google Scholar]
  12. KönigerF., SchmittG., SchuhmannR. and StachederM.2006. Integrale Bodenfeuchteermittlung durch Auswertung von RF‐Signalen auf Hochspannungsleitungen: Der “FreeLineSensor”. Berichtsband zum Workshop 2006, Innovative Feuchtemessung in Forschung und Praxis, 17–18 October, Karlsruhe, Germany.
    [Google Scholar]
  13. MahmoodR. and HubbardK.G.2003. Simulating sensitivity of soil moisture and evapotranspiration under heterogeneous soils and land uses. Journal of Hydrology280, 72–90.
    [Google Scholar]
  14. PodszeckH.‐H.1962. Trägerfrequenz‐Nachrichtenübertragung über Hochspannungsleitungen. Springer Verlag (in German).
    [Google Scholar]
  15. PozarD.M.1990. Microwave Engineering. Addison‐Wesley.
    [Google Scholar]
  16. RingsJ., HauckC., ScheuermannA. and PrekoK.2006. Geophysical monitoring of dike water content. EGE Geophysical Research Abstracts 8, Expanded Abstracts, 02253.
    [Google Scholar]
  17. RubinY. and HubbardS.2005. Hydrogeophysics. Springer.
    [Google Scholar]
  18. SchädlerG.1990. Triggering of atmospheric circulations by moisture inhomogeneities of the Earth’s surface. Boundary‐Layer Meteorology51, 1–29.
    [Google Scholar]
  19. SchlaegerS., HübnerC. and BeckerR.2005. Simple soil moisture probe for low‐cost measurement applications. Proceedings of the 6th Conference on Electromagnetic Wave Interaction with Water and Moist Substances, ISEMA 2005, Weimar, Germany, 29 May – 1 June 1, pp. 258–265.
    [Google Scholar]
  20. SchlaegerS., HübnerC. and BeckerR.2006. Bodenfeuchtesensor für kostensensitive Anwendungen. Berichtsband zum Workshop 2006, Innovative Feuchtemessung in Forschung und Praxis, 17–18 October, Karlsruhe, Germany, pp. 23–29.
    [Google Scholar]
  21. ToppG.C. and DavisJ.L.1985. Measurement of soil water content using time‐domain reflectometry (TDR): A field evaluation. Soil Science Society of America Journal49, 19–24.
    [Google Scholar]
  22. ToppG.C., DavisJ. L. and AnnanA.P.1980. Electromagnetic determination on soil water content: Measurements in coaxial transmission lines. Water Resources Research16, 579–582.
    [Google Scholar]
  23. UlabyF., BatlivalaP. and DobsonM.1978. Microwave backscatter dependence on surface roughness, soil moisture and soil texture, Part I – Bare soil. IEEE Transactions on Geoscience Electronics16, 286–295.
    [Google Scholar]
  24. UlabyF., BatlivalaP. and DobsonM.1979. Microwave backscatter dependence on surface roughness, soil moisture and soil texture, Part II – Vegetation covered soil. IEEE Transactions on Geoscience Electronics16, 286–295.
    [Google Scholar]
  25. WörschingH., BeckerR., SchlaegerS. and BiebersteinA.2006. Feuchtemessung mit Spatial‐TDR in großmaßstäblichen Modelldeichen aus Lehm. Berichtsband zum Workshop 2006, Innovative Feuchtemessung in Forschung und Praxis, 17–18 October, Karlsruhe, Germany, pp. 215‐221.
    [Google Scholar]
  26. ZeheE., BeckerR. and BardossyA.2001. The influence of spatial variability of soil moisture and precipitation on runoff production. International Workshop on Catchment Scale Hydrologic Modelling and Data Assimilation, 3–5 September, Wageningen, the Netherlands, Expanded Abstracts, 57–58.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2009059
Loading
/content/journals/10.3997/1873-0604.2009059
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error