1887
Volume 8, Issue 3
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

Gypsum deposits are the currently exploited sulphate rocks with industrial purposes. In addition to the expensive drilling projects, geophysical techniques can be considered to estimate the economical potential of these deposits.

An electrical resistivity tomography survey has been carried out in the Pira gypsum formation (SE of the Catalan margin of the Tertiary Ebro Basin, Spain). Additionally, a continuous coring drill was performed in order to support the study. Electrical imaging has been successfully applied to identify the gypsum deposits interlayered in lutite units. Nevertheless, the gypsum‐lutite boundaries are diffuse and uncertain in the tomographic lines. Comparison of the cores of the borehole and the electrical response shows a meaningful correlation between electrical resistivity and purity of gypsum. The electrical resistivity tomography profiles display a rather wide range of electrical resistivity value (from ) for the investigated gypsum facies. The highest values are attributed to sulphate layers with >90% of gypsum mineral. Lutite units display higher values than expected due to the presence of evaporite minerals within them (>10 ).

Additionally, induced polarization measures have been performed in order to study the chargeability of gypsum deposits. It has been evidenced that impure gypsum rocks (with important presence of lutites within) are slightly chargeable. This property has allowed distinguishing between lutite levels and clay‐rich gypsum rocks.

Electrical resistivity tomography lines are useful in the prospection of gypsum deposits. However, electrical imaging prospection should be supported by an accurate petrological study of the deposits, in order to properly interpret the resistivity profiles.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2010009
2010-04-01
2024-04-20
Loading full text...

Full text loading...

References

  1. AnadónP., CabreraL., GuimeràJ. and SantanachP.1985. Paleogene strike‐slip deformation and sedimentation along the southeastern margin of the Ebro Basin. In: Strike‐slip Deformation, Basin Formation and Sedimentation (eds K.Biddle and N.Christie‐Blick ), pp. 303–318. Society of Economic Palaeontologists and Mineralogists.
    [Google Scholar]
  2. AsfahaniJ. and MohamadR.2002. Geo‐electrical investigation for sulphur prospecting in Teshreen Structure in Northeast Syria. Exploration and Mining Geology11, 49–59.
    [Google Scholar]
  3. BallL.B., LuciusJ.E., LandL.A. and TeepleA.P.2006. Geological Survey Scientific Investigations Report 2006. US Geological Survey.
    [Google Scholar]
  4. BensonR.C. and KaufmannR.D.2001. Characterization of a highway sinkhole within the gypsum karst of Michigan. In: Geotechnical and Environmental Applications of Karst Geology and Hydrology (eds B.F.Beck and J.G.Herring ), pp. 103–112. Taylor & Francis.
    [Google Scholar]
  5. BonettoS., FornaroM., GiulaniA. and LasagnaM.2008. Underground quarrying and water control: Some cases from Nothern Italy. 10th International Mine Water Association Congress, 2008, Czech Republic, Expanded Abstracts, P02.
    [Google Scholar]
  6. CabreraLl., RocaE., GarcésM. and de PortaJ.2004. Estratigrafía y evolución tectonosedimentaria oligocena superiorneógena del sector central del margen catalán (Cadena Costero‐ Catalana). In: Geologia de España (ed. J.A.Vera ), pp. 569–573. Sociedad Geológica de España‐Instituto Geológico y Minero de España, Madrid (in Spanish).
    [Google Scholar]
  7. ColeK.S. and ColeR.H.1941. Dispersion and absorption in dielectrics. Journal of Chemical Physics9, 341–351.
    [Google Scholar]
  8. DahlinT., LerouxV. and NissenJ.2002. Measuring techniques in induced polarisation imaging. Journal of Applied Geophysics50, 279–298.
    [Google Scholar]
  9. DeucesterJ. and KaufmannO.2009. Correlation between inverted chargeabilities and organic compounds concentrations in soils‐A field experiment. 15th Near Surface meeting, Dublin, Ireland, Expanded Abstracts, C19.
    [Google Scholar]
  10. EffersoF.2006. Resolution of Cole‐Cole parameters based on induced polarization data. In: Methods and Applications of Inversion (eds P.C.Hansen , B.H.Jacobsen and K.Mosegaard ), pp. 120–128. Springer.
    [Google Scholar]
  11. deGroot‐HedlinC. and ConstableS.1990. Occam’s inversion to generate smooth, two‐dimensional models from magnetotelluric data. Geophysics55, 1613–1624.
    [Google Scholar]
  12. GuineaA., PlayàE., RiveroL. and HimiM.2009. Importance of gypsum purity in electric imaging. 15th Near Surface meeting, Dublin, Ireland, Expanded Abstracts, P08.
    [Google Scholar]
  13. LugoE., PlayàE. and RiveroLl.2008. Aplicación de la tomografía eléctrica a la prospección de formaciones evaporíticas. Geogaceta44, 223–226 (in Spanish).
    [Google Scholar]
  14. NyáriZ. and KanliA.I.2007. Imaging of buried 3D objects by using electrical profiling methods with GPR and 3D geoelectrical measurements. Journal of Geophysics and Engineering4, 83–93.
    [Google Scholar]
  15. OrellanaE.1982. Prospección geoeléctrica en corriente continua.Paraninfo.
    [Google Scholar]
  16. OrtíF.1990a. Introducción a las evaporitas de la Cuenca Terciaria del Ebro. In: Formaciones evaporíticas de la Cuenca del Ebro y cadenas periféricas, y de la zona de Levante (eds F.Ortí and J.M.Salvany ), pp. 62–66. Universidad de Barcelona‐Enresa.
    [Google Scholar]
  17. OrtíF.1990b. Las formaciones evaporíticas del Terciario continental de la zona de contacto entre la Cuenca del Ebro y los Catalánides. In: Formaciones evaporíticas de la Cuenca del Ebro y cadenas periféricas, y de la zona de Levante (eds F.Ortí and J.M.Salvany ), pp. 70–75. Universidad de Barcelona‐Enresa.
    [Google Scholar]
  18. OrtíF., RosellL. and PlayàE.2007. Depositional models of lacustrine evaporites in the SE margin of the Ebro Basin (Paleogene, NE Spain). Geologica Acta5, 19–34.
    [Google Scholar]
  19. OrtíF., RosellL. and PlayàE.2009. Meganodular anhidritisation: a shallow to moderate burial mechanism of gypsum‐to‐anhydrite conversion. Geological Quarterly (submitted).
    [Google Scholar]
  20. RiderM.H.1986. The Geological Interpretation of Well Logs.Blackie Halsted Press.
    [Google Scholar]
  21. SasakiY.1992. Resolution of resistivity tomography inferred from numerical simulation. Geophysical Prospecting40, 453–463.
    [Google Scholar]
  22. SumanovacF. and DominkovicS.2007. Determination of resolution limits of electrical tomography on the block model in a homogenous environment by means of electrical modelling. Rudarsko Geolosko Naftni Zbornik19, 47–56.
    [Google Scholar]
  23. SumnerJ.S.1976. Principles of Induced Polarization for Geophysical Exploration.Elsevier.
    [Google Scholar]
  24. SzalaiS., NovákA. and SzarkaL.2009. Depth of investigation and vertical resolution of surface geoelectric arrays. Journal of Environmental & Engineering Geophysics14, 15–23.
    [Google Scholar]
  25. SzalaiS. and SzarkaL.2008. On the classification of surface geoelectric arrays. Geophysical Prospecting56, 159–175.
    [Google Scholar]
  26. TakakuraS. and NakadaK.2006. IP measurements on tunnel walls of a sericite deposit – A contact method of nonpolarizable electrodes on a base rock and detection of clay minerals by normalised chargeability. Geophysical Exploration59, 363–370.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2010009
Loading
/content/journals/10.3997/1873-0604.2010009
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error