1887
Volume 58, Issue 5
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Low‐frequency passive seismic experiments utilizing arrays of 3‐component broadband seismometers were conducted over two sites in the emirate of Abu Dhabi in the United Arab Emirates. The experiments were conducted in the vicinity of a producing oilfield and around a dry exploration well to better understand the characteristics and origins of microtremor signals (1–6 Hz), which had been reported as occurring exclusively above several hydrocarbon reservoirs in the region.

The results of the experiments revealed that a strong correlation exists between the recorded ambient noise and observed meteorological and anthropogenic noises. In the frequency range of 0.15–0.4 Hz, the dominant feature is a double‐frequency microseism peak generated by the non‐linear interactions of storm induced surface waves in the Arabian Sea. We observed that the double‐frequency microseism displays a high variability in spectral amplitude, with the strongest amplitude occurring when Cyclone Gonu was battering the eastern coast of Oman; this noise was present at both sites and so is not a hydrocarbon indicator. Moreover, this study found that very strong microtremor signals in the frequency range of 2–3 Hz were present in all of the locations surveyed, both within and outside of the reservoir boundary and surrounding the dry exploration well. This microtremor signal has no clear correlation with the microseism signals but significant variations in the characteristics of the signals were observed between daytime and nighttime recording periods that clearly correlate with human activity.

High‐resolution frequency‐wavenumber () spectral analyses were performed on the recorded data to determine apparent velocities and azimuths of the wavefronts for the microseism and microtremor events. The analyses confirmed that the double‐frequency microseism originates from wave activity in the Arabian Sea, while the microtremor events have an azimuth pointing towards the nearest motorways, indicating that they are probably being excited by traffic noise. Results drawn from particle motion studies confirm these observations. The vertical‐to‐horizontal spectral ratios of the data acquired in both experiments show peaks around 2.5–3 Hz with no dependence on the presence or absence of subsurface hydrocarbons. Therefore, this method should not be used as a direct hydrocarbon indicator in these environments. Furthermore, the analyses provide no direct evidence to indicate that earthquakes are capable of stimulating the hydrocarbon reservoir in a way that could modify the spectral amplitude of the microtremor signal.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2478.2009.00835.x
2009-10-23
2024-03-28
Loading full text...

Full text loading...

References

  1. AliM.Y., BerteussenK.A., SmallJ., AnjanaB.T. and BarkatB.2009a. Recent passive experiments in Abu Dhabi. EAGE Passive Seismic Workshop − Exploration and Monitoring Applications , Limassol , Cyprus , Expanded Abstracts, A36.
  2. AliM.Y., BerteussenK.A., SmallJ., AnjanaB.T., BarkatB. and PahleviO.2009b. Recent low frequency passive seismic experiments in Abu Dhabi. 71st EAGE meeting , Amsterdam , The Netherlands , Expanded Abstracts, S037.
  3. AliM.Y., BerteussenK.A., SmallJ. and BarkatB.2007. A low frequency passive seismic experiment over a carbonate reservoir in Abu Dhabi. First Break25, 71–73.
    [Google Scholar]
  4. AliM.Y., BerteussenK.A., SmallJ., BarkatB. and PahleviO.2009c. Results from a low frequency passive seismic experiment over an oilfield in Abu Dhabi. First Break27, 91–97.
    [Google Scholar]
  5. AliM.Y., BerteussenK.A., SmallJ. and PahleviO.2009d. Microseism and microtremor analyses over an oilfield in Abu Dhabi – Implications for cyclone and hydrocarbon detection. 71st EAGE meeting , Amsterdam , The Netherlands , Expanded Abstracts, SO34.
  6. AliM.Y. and WattsA.B.2009. Subsidence history, gravity anomalies and flexure of the United Arab Emirates (UAE) foreland basin. Geoarabia14, 17–44.
    [Google Scholar]
  7. AnsalA.M., IyisanR. and GulluH.2001. Microtremor measurements for the microzonation of Dinar. Pure and Applied Geophysics158, 2525–2541.
    [Google Scholar]
  8. BarstowN., SuttonG.H. and CarterJ.A.1989. Particle motion and pressure relationships of ocean bottom noise at 3900 m depth: 0.003 to 5 Hz. Geophysical Research Letters16, 1185–1188.
    [Google Scholar]
  9. BerteussenK.A., AliM.Y., SmallJ., AnjanaB.T. and BarkatB.2008a. Analysis of low frequency passive seismic data from an experiment over a carbonate reservoir in Abu Dhabi. Abu Dhabi International Petroleum Exhibition and Conference , Abu Dhabi , United Arab Emirates , SPE ‐117925‐MS.
  10. BerteussenK.A., AliM.Y., SmallJ. and BarkatB.2008b. A low frequency, passive seismic experiment over a carbonate reservoir in Abu Dhabi – Wavefront and particle motion study. 70th EAGE meeting , Rome , Italy , Expanded Abstracts, B046.
  11. BhattaraiM.2005. Seismic microzonation using H/V spectral ratios with single station microtremor survey. Individual Studies by Participants at the International Institute of Seismology and Earthquake Engineering41, 73–86.
    [Google Scholar]
  12. BlochG. and AkrawiK.2006. Application of passive seismic (IPDS) surveys in Arabian Peninsula. EAGE passive seismic workshop − Exploration and monitoring applications , Dubai , United Arab Emirates , Expanded Abstracts, A28.
  13. BodinP. and HortonS.1999. Broadband microtremor observation of basis resonance in the Mississippi embayment, Central US. Geophysical Research Letters26, 903–906.
    [Google Scholar]
  14. Bonnefoy‐ClaudetS., CornouC., BardP.Y., CottonF., MoczoP., KristekJ. and FahD.2006a. H/V ratio: a tool for site effects evaluation. Results from 1‐D noise simulations. Geophysical Journal International167, 827–837.
    [Google Scholar]
  15. Bonnefoy‐ClaudetS., CottonF. and BardP.Y.2006b. The nature of noise wavefield and its applications for site effects studies – A literature review. Earth-Science Reviews79, 205–227.
    [Google Scholar]
  16. BromirskiP.D. and DuennebierF.K.2002. The near‐coastal microseism spectrum: Spatial and temporal wave climate relationships. Journal of Geophysical Research-Solid Earth107, 2166. doi:10.1029/2001JB000265
    [Google Scholar]
  17. BromirskiP.D., DuennebierF.K. and StephenR.A.2005. Mid‐ocean microseisms. Geochemistry Geophysics Geosystems6, Q04009. doi:10.1029/2004GC000768.
    [Google Scholar]
  18. CaponJ.1969. High‐resolution frequency‐wavenumber spectrum analysis. Proceedings of the IEEE57, 1408–1418.
    [Google Scholar]
  19. CaraF., CultreraG., AzzaraR.M., De RubeisV., Di GiulioG., GiammarinaroM.S.et al . 2008. Microtremor measurements in the city of Palermo, Italy: Analysis of the correlation between local geology and damage. Bulletin of the Seismological Society of America98, 1354–1372.
    [Google Scholar]
  20. CaraF., Di GiulioG. and RovelliA.2003. A study on seismic noise variations at Colfiorito, central Italy; Implications for the use of H/V spectral ratios. Geophysical Research Letters30, 1972. doi:10.1029/2003GL017807.
    [Google Scholar]
  21. CessaroR.K.1994. Sources of primary and secondary microseisms. Bulletin of the Seismological Society of America84, 142–148.
    [Google Scholar]
  22. Chavez‐GarciaF.J. and LuzonF.2005. On the correlation of seismic microtremors. Journal of Geophysical Research-Solid Earth110, B08302.
    [Google Scholar]
  23. Chavez‐GarciaF.J. and RodriguezM.2007. The correlation of microtremors: empirical limits and relations between results in frequency and time domains. Geophysical Journal International171, 657–664.
    [Google Scholar]
  24. ChevrotS., SylvanderM., BenahmedS., PonsollesC., LefevreJ.M. and ParadisD.2007. Source locations of secondary microseisms in western Europe: Evidence for both coastal and pelagic sources. Journal of Geophysical Research-Solid Earth112, B11301. doi:10.10292007JB005059
    [Google Scholar]
  25. ChoI., TadaT. and ShinozakiY.2006. A generic formulation for microtremor exploration methods using three‐component records from a circular array. Geophysical Journal International165, 236–258.
    [Google Scholar]
  26. CohenL.1995. Time‐Frequency Analysis . Prentice‐Hall.
    [Google Scholar]
  27. Le ComteD.2008. Global Weather Highlights 2007: A mixed bag. Weatherwise61, 16–18.
    [Google Scholar]
  28. DangelS., SchaepmanM.E., StollE.P., CarnielR., BarzandjiO., RodeE.D. and SingerJ.M.2003. Phenomenology of tremor‐like signals observed over hydrocarbon reservoirs. Journal of Volcanology and Geothermal Research128, 135–158.
    [Google Scholar]
  29. De BhowmickA.K., ThaniM.A. and Al‐RawahiY.2007. Cyclone ‘GONU’ and reliability of main interconnected transmission system of Oman. IEEE Conference , Perth , Australia , Expanded Abstracts, 48–52.
  30. Di GiulioG., CornouC., OhrnbergerM., WatheletM. and RovelliA.2006. Deriving wavefield characteristics and shear‐velocity profiles from two‐dimensional small‐aperture arrays analysis of ambient vibrations in a small‐size alluvial basin, Colfiorito, Italy. Bulletin of the Seismological Society of America96, 1915–1933.
    [Google Scholar]
  31. DraganovD., CampmanX., ThorbeckeJ., VerdelA. and WapenaarK.2009. Subsurface structure from ambient seismic noise. 71st EAGE meeting , Amsterdam , The Netherlands , Expanded Abstracts, Z038.
  32. DraganovD., WapenaarK., MulderW., SingerJ. and VerdelA.2007. Retreival of reflections from background‐noise measurements. Geophysical Research Letters34, L04305.
    [Google Scholar]
  33. DuttaU., SatohT., KawaseH., SatoT., BiswasN., MartirosyanA. and DravinskiM.2007. S‐wave velocity structure of sediments in Anchorage, Alaska, estimated with array measurements of microtremors. Bulletin of the Seismological Society of America97, 234–255.
    [Google Scholar]
  34. FrehnerM., SchmalholzS.M., HolznerR. and PodladchikovY.Y.2006. Interpretation of hydrocarbon microtremors as pore fluid oscillations driven by ambient seismic noise. EAGE Passive Seismic Workshop − Exploration and Monitoring Applications , Dubai , United Arab Emirates , Expanded Abstracts, A05.
  35. FrehnerM., SchmalholzS.M. and PodladchikovY.2009. Spectral modification of seismic waves propagating through solids exhibiting a resonance frequency: A 1‐D coupled wave propagation‐oscillation model. Geophysical Journal International176, 589–600.
    [Google Scholar]
  36. FrehnerM., SchmalholzS.M., PodladchikovY., EthZ. and OsloU.2007. Interaction of seismic background noise with oscillating pore fluids causes spectral modifications of passive seismic measurements at low frequencies. 77th SEG meeting , San Antonio , Texas , USA , 1307–1311.
  37. FriedrichA., KrügerF. and KlingeK.1998. Ocean‐generated microseismic noise located with the Gräfenberg array. Journal of Seismology2, 47–64.
    [Google Scholar]
  38. GaullB.A., KagamiH. and TaniguchiH.1995. The microzonation of Perth, Western Australia, using microtremor spectral ratios. Earthquake Spectra11, 173–191.
    [Google Scholar]
  39. GerstoftP., FehlerM.C. and SabraK.G.2006. When Katrina hit California. Geophysical Research Letters33, L17308. doi:10.1029/2006GL027270
    [Google Scholar]
  40. GoertzA.V., SchechingerB., KoerbeM. and KrajewskiP.2009. A low‐frequency passive seismic survey in an urban setting in Germany. 71st EAGE meeting , Amsterdam , The Netherlands , Expanded Abstracts, S039.
  41. GrafR., SchmalholzS.M., PodladchikovY.Y. and SaengerE.H.2007. Passive low frequency spectral analysis: Exploring a new field in geophysics. World Oil228, 47–52.
    [Google Scholar]
  42. GreenA. and GreenhalghS.2009. Microtremor spectra: A proven means for estimating resonant frequencies and S‐wave velocities of shallow soils/sediments, but a questionable tool for locating hydrocarbon reservoirs. First Break27, 5–11.
    [Google Scholar]
  43. GrevemeyerI., HerberR. and EssenH.H.2000. Microseismological evidence for a changing wave climate in the northeast Atlantic Ocean. Nature408, 349–352.
    [Google Scholar]
  44. GuillierB., ChatelainJ.L., HellelM., MachaneD., MezouerN., Ben SalemR. and OubaicheE.H.2005. Smooth bumps in H/V curves over a broad area from single‐station ambient noise recordings are meaningful and reveal the importance of Q in array processing: The Boumerdes (Algeria) case. Geophysical Research Letters32, L24306. doi:10.1029/2005GL023726
    [Google Scholar]
  45. HaghshenasE., BardP.Y., TheodulidisN. and the SESAME WP04 Team . 2008. Empirical evaluation of microtremor H/V spectral ratio. Bulletin of Earthquake Engineering6, 75–108.
    [Google Scholar]
  46. HanssenP. and BussatS.2008. Pitfalls in the analysis of low frequency passive seismic data. First Break26, 111–119.
    [Google Scholar]
  47. HartzellS., CarverD., WilliamsR.A., HarmsenS. and ZervaA.2003. Site response, shallow shear‐wave velocity and wave propagation at the San Jose, California, dense seismic array. Bulletin of the Seismological Society of America93, 443–464.
    [Google Scholar]
  48. HaubrichR.A. and McCamyK.1969. Microseisms; Coastal and pelagic sources. Reviews of Geophysics7, 539–571.
    [Google Scholar]
  49. HolznerR., EschleP., DangelS., FrehnerM., NarayananC. and LakehalD.2009. Hydrocarbon microtremors interpreted as nonlinear oscillations driven by oceanic background waves. Communications in Nonlinear Science & Numerical Simulation14, 160–173.
    [Google Scholar]
  50. HolznerR., EschleP., DangelS. and NarayananC.2007a. Hydrocarbon related microtremors –Verification of an analytical oscillator model by the Navier‐Stokes equations. 69th EAGE meeting , London , UK , Expanded Abstracts, P212.
  51. HolznerR., EsehleP., DewarratR., LambertM. and GrafR.2006c. Marine application of hydrocarbon microtremor analysis (HyMAS). 76th SEG meeting , New Orleans , Louisiana , USA , 2290–2293.
  52. HolznerR., EschleP., FrehnerM., SchmalholzS. and PodlachikovY.2006a. Hydrocarbon microtremors interpreted as oscillations driven by oceanic background waves. 68th EAGE meeting , Vienna , Austria , Expanded Abstracts, D036.
  53. HolznerR., EschleP., FrehnerM., SchmalholzS. and PodladchikovY.2006b. Interpretation of hydrocarbon microtremors as nonlinear oscillations driven by oceanic background waves. 76th SEG meeting , New Orleans , Louisiana , USA , 2294–2298.
  54. HolznerR., EschleP., MeierP.F. and DangelS.2007b. Linear model for low‐frequency pore liquid oscillations observed in hydrocarbon microtremor analysis (HyMAS). GeoArabia12, 169.
    [Google Scholar]
  55. HolznerR., EschleP., ZurcherH., GrafR., DangelS. and MeierP.F.2005a. Identification of hydrocarbon reservoirs by microtremor analysis (HyMAS) – Successful and reproducible. 2nd SEG/EGS/EPEX/EPA International Petroleum Conference , Cairo , Egypt , 36.
  56. HolznerR., EschleP., ZurcherH., GrafR., DangelS. and MeierP.F.2005b. Case study of successful identification of hydrocarbon reservoirs by microtremor analysis (HyMAS). AAPG International Conference , Paris , France .
  57. HolznerR., EschleP., ZurcherH., LambertM., GrafR., DangelS. and MeierP.F.2005c. Applying microtremor analysis to identify hydrocarbon reservoirs. First Break23, 41–46.
    [Google Scholar]
  58. HorikeM., ZhaoB. and KawaseH.2001. Comparison of site response characteristics inferred from microtremors and earthquake shear waves. Bulletin of the Seismological Society of America91, 1526–1536.
    [Google Scholar]
  59. KedarS. and WebbF.H.2005. The ocean's seismic hum. Science307, 682–683.
    [Google Scholar]
  60. KindF., FaehD. and GiardiniD.2005. Array measurements of S‐wave velocities from ambient vibrations. Geophysical Journal International160, 114–126.
    [Google Scholar]
  61. KonnoK. and OhmachiT.1998. Ground‐motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bulletin of the Seismological Society of America88, 228–241.
    [Google Scholar]
  62. LambertM., SchmalholzS.M., SaengerE.H. and PodladchikovY.Y.2007. Low‐frequency anomalies in spectral ratios of single‐station microtremor measurements: Observations across an oil and gas field in Austria. 77th SEG meeting , San Antonio , Texas , USA , Expanded Abstracts, 1352–1356.
  63. LambertM.‐A., SchmalholzS.M., SaengerE.H. and SteinerB.2009a. Low‐frequency microtremor anomalies at an oil and gas field in Voitsdorf, Austria. Geophysical Prospecting57, 393–411. doi:10.1111/j.1365‐‐2478.2008.00734.x
    [Google Scholar]
  64. LambertM.A., SchmalholzS.M., SaengerE.H. and SteinerB.2009b. Passive seismic study at an oil and gas field in Voitsdorf, Austria. EAGE Passive Seismic Workshop − Exploration and Monitoring Applications , Limassol , Cyprus , Expanded Abstracts, A34.
  65. LermoJ. and Chavez‐GarciaF.J.1994. Are microtremors useful in site response evaluation?Bulletin of the Seismological Society of America84, 1350–1364.
    [Google Scholar]
  66. LiuH.‐P., BooreD.M., JoynerW.B., OppenheimerD.H., WarrickR.E., ZhangW.et al . 2000. Comparison of phase velocities from array measurements of Rayleigh waves Associated with microtremor and results calculated from borehole shear‐wave velocity profiles. Bulletin of the Seismological Society of America90, 666–678.
    [Google Scholar]
  67. Longuet‐HigginsM.S.1950. A theory of the origin of microseisms. Philosophical Transactions of the Royal Society of London A243, 1–35.
    [Google Scholar]
  68. LouieJ.N.2001. Faster, better: Shear‐wave velocity to 100 meters depth from refraction microtremor arrays. Bulletin of the Seismological Society of America91, 347–364.
    [Google Scholar]
  69. MarescaR., GalluzzoD. and Del PezzoE.2006. H/V spectral ratios and array techniques applied to ambient noise recorded in the Colfiorito Basin, central Italy. Bulletin of the Seismological Society of America96, 490–505.
    [Google Scholar]
  70. MarzoratiS. and BindiD.2006. Ambient noise levels in north central Italy. Geochemistry Geophysics Geosystems7, Q09010, doi:10.1029/2006GC001256.
    [Google Scholar]
  71. Van MastrigtP. and Al‐DulaijanA.2008. Seismic spectroscopy using amplified 3C geophones. 70th EAGE meeting , Rome , Italy , Expanded Abstracts, B047.
  72. McNamaraD.E. and BulandR.P.2004. Ambient noise levels in the continental United States. Bulletin of the Seismological Society of America94, 1517–1527.
    [Google Scholar]
  73. NakamuraY.1989. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Quarterly Report Railway Technical Research Institute30, 25–30.
    [Google Scholar]
  74. NguyenT.T., LambertM., SaengerE.H., ArtmanB. and SchmalholzS.M.2009. Reduction of noise effects on low frequency passive seismic data. 71st EAGE meeting , Amsterdam , the Netherlands , Expanded Abstracts, S038.
  75. NguyenT.T., SaengerE.H., SchmalholzS.M. and ArtmanB.2008. Earthquake triggered modifications of microtremor signals above and nearby a hydrocarbon reservoir in Voitsdorf, Austria. 70th EAGE meeting , Rome , Italy , Expanded Abstracts, P025.
  76. OhoriM., NobataA. and WakamatsuK.2002. A Comparison of ESAC and FK methods of estimating phase velocity using arbitrarily shaped microtremor arrays. Bulletin of the Seismological Society of America92, 2323–2332.
    [Google Scholar]
  77. OkadaH.2003. The Microtremor Survey Method. Geophysica . SEG. ISBN 1560801204.
    [Google Scholar]
  78. ParolaiS., BormannP. and MilkereitC.2002. New relationships between Vs, thickness of sediments, and resonance frequency calculated by the H/V ratio of seismic noise for the Cologne area (Germany). Bulletin of the Seismological Society of America92, 2521–2527.
    [Google Scholar]
  79. PetersonJ.1993. Observations and modeling of seismic background noise. US Geological Survey, Open File Report, 93–322, 1–95.
  80. PicozziM., ParolaiS. and RichwalskiS.M.2005. Joint inversion of H/V ratios and dispersion curves from seismic noise: Estimating the S‐wave velocity of bedrock. Geophysical Research Letters32, L11308, doi:10.1029/2005GL022878.
    [Google Scholar]
  81. RachedG.R.2006. Surface passive seismic in Kuwait. EAGE Passive Seismic Workshop − Exploration and Monitoring Applications , Dubai , United Arab Emirates , Expanded Abstracts, A27.
  82. RachedG.R.2009. The challenge for surface passive seismic measurements in Kuwait. EAGE Passive Seismic Workshop – Exploration and Monitoring Applications , Limassol , Cyprus , Expanded Abstracts, A33.
  83. RodriguezV.H.S. and MidorikawaS.2003. Comparison of spectral ratio techniques for estimation of site effects using microtremor data and earthquake motions recorded at the surface and in boreholes. Earthquake Engineering & Structural Dynamics32, 1691–1714.
    [Google Scholar]
  84. SaengerE.H., LambertM.A., NguyenT.T. and SchmalholzS.M.2009a. Preliminary model of hydrocarbon reservoir related microtremors. 71st EAGE meeting , Amsterdam , the Netherlands , Expanded Abstracts, S035.
  85. SaengerE.H., SchmalholzS.M., LambertM.A., NguyenT.T., TorresA., MetzgerS.et al . 2009b. A passive seismic survey over a gas field: Analysis of low‐frequency anomalies. Geophysics74, O29–O40.
    [Google Scholar]
  86. SaengerE.H., SchmalholzS.M., PodladchikovY.Y., HolznerR., LambertM., SteinerB.et al . 2007a. Scientific strategy to explain observed spectral anomalies over hydrocarbon reservoirs generated by microtremors. 69th EAGE meeting , London , UK , Expanded Abstracts, A033.
  87. SaengerE.H., TorresA. and ArtmanB.2009c. A low‐frequency passive seismic survey in Libya. EAGE Detective Stories Behind Prospect Generation Workshop − Challenges and The Way Forward , Muscat , Oman , Expanded Abstracts, 5028.
  88. SaengerE.H., TorresA., RentschS., LambertM., SchmalholzS.M. and MendezH.E.2007b. A hydrocarbon microtremor survey over a gas field: Identification of seismic attributes. 77th SEG meeting , San Antonio , Texas , USA , Expanded Abstracts, 1277–1281.
  89. SatohT., KawaseH. and MatsushimaS.2001. Estimation of S‐wave velocity structures in and around the Sendai basin, Japan, using array records of microtremors. Bulletin of the Seismological Society of America91, 206–218.
    [Google Scholar]
  90. ScherbaumF., HinzenK.G. and OhrnbergerM.2003. Determination of shallow shear wave velocity profiles in the Cologne, Germany area using ambient vibrations. Geophysical Journal International152, 597–612.
    [Google Scholar]
  91. SchmalholzS.M., PodladchikovY.Y., HolznerR. and SaengerE.H.2006. Scientific strategy to explain observed spectral anomalies over hydrocarbon reservoirs generated by microtremors. EAGE Passive Seismic Workshop − Exploration and Monitoring Applications , Dubai , United Arab Emirates , Expanded Abstracts, A06.
  92. SingerJ.M., BarzandjiO., LeuW., RodeE.D., AkrawiK., LinthorstS. and DangelS.2002. Spectroscopic identification of tremor phenomena over hydrocarbon reservoirs. 64th EAGE meeting , Florence , Italy , Expanded Abstracts, H‐46.
  93. SteinerB., SaengerE.H. and SchmalholzS.M.2007. Time‐reverse modeling of microtremors: A potential method for hydrocarbon reservoir localization. 77th SEG meeting , San Antonio , Texas , USA , Expanded Abstracts, 2115–2119.
  94. SteinerB., SaengerE.H. and SchmalholzS.M.2008a. Case studies on 2D‐ and 3D‐time reverse modeling of low‐frequency microtremors – Application to reservoir localization. 70th EAGE meeting , Rome , Italy , Expanded Abstracts, B045.
  95. SteinerB., SaengerE.H. and SchmalholzS.M.2008b. Time reverse modeling of low‐frequency microtremors: Application to hydrocarbon reservoir localization. Geophysical Research Letters35, L03307. doi:10.1029/2007GL032097
    [Google Scholar]
  96. StephensonW.J., HartzellS., FrankelA.D., AstenM., CarverD.L. and KimW.Y.2009. Site characterization for urban seismic hazards in lower Manhattan, New York City, from microtremor array analysis. Geophysical Research Letters36, L03301, doi:10.1029/2008GL036444
    [Google Scholar]
  97. TadaT., ChoI. and ShinozakiY.2006. A two‐radius circular array method; inferring phase velocities of Love waves using microtremor records. Geophysical Research Letters33, L10303, doi:10.1029/2006GL025722
    [Google Scholar]
  98. TadaT., ChoI. and ShinozakiY.2007. Beyond the SPAC method: Exploiting the wealth of circular‐array methods for microtremor exploration. Bulletin of the Seismological Society of America97, 2080–2095.
    [Google Scholar]
  99. TanimotoT.2007. Excitation of normal modes by non‐linear interaction of ocean waves. Geophysical Journal International168, 571–582.
    [Google Scholar]
  100. TanimotoT., IshimaruS. and AlvizuriC.2006. Seasonality in particle motion of microseisms. Geophysical Journal International166, 253–266.
    [Google Scholar]
  101. TuladharR., YamazakiF., WarnitchaiP. and SaitaJ.2004. Seismic microzonation of the greater Bangkok area using microtremor observations. Earthquake Engineering & Structural Dynamics33, 211–225.
    [Google Scholar]
  102. WalkerD.2008. Recent developments in low frequency spectral analysis of passive seismic data. First Break26, 69–77.
    [Google Scholar]
  103. WatheletM., JongmansD., OhrnbergerM. and Bonnefoy‐ClaudetS.2008. Array performances for ambient vibrations on a shallow structure and consequences over Vs inversion. Journal of Seismology12, 1–19.
    [Google Scholar]
  104. WebbS.C.2007. The Earth's ‘hum’ is driven by ocean waves over the continental shelves. Nature445, 754–756.
    [Google Scholar]
  105. WilsonD., LeonJ., AsterR., NiJ., SchlueJ., GrandS.et al . 2002. Broadband seismic background noise at temporary seismic stations observed on a regional scale in the southwestern United States. Bulletin of the Seismological Society of America92, 3335–3342.
    [Google Scholar]
  106. WithersM.M., AsterR.C., YoungC.J. and ChaelE.P.1996. High‐frequency analysis of seismic background noise as a function of wind speed and shallow depth. Bulletin of the Seismological Society of America86, 1507–1515.
    [Google Scholar]
  107. YamanakaH., DravinskiM. and KagamiH.1993. Continuous measurements of microtremors on sediments and basement in Los Angeles, California. Bulletin of the Seismological Society of America83, 1595–1609.
    [Google Scholar]
  108. YoungC.J., ChaelE.P., WithersM.M. and AsterR.C.1996. A comparison of the high‐frequency (>1Hz) surface and subsurface noise environment at three sites in the United States. Bulletin of the Seismological Society of America86, 1516–1528.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2478.2009.00835.x
Loading
/content/journals/10.1111/j.1365-2478.2009.00835.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error