1887
Volume 58 Number 6
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

The purpose of this study is to compare the reliability of various methods of estimating normal rock fracture compliance from elastic wave measurements. We compare ultrasonic through‐transmission laboratory measurements for a smooth fracture in a Westerly granite specimen with numerical simulations and analytical solutions. The focus is on deriving compliance from time delays. The influence of specimen and source transducer width was constrained using numerical wave simulations. We find that measured ultrasonic phase delays are better suited to estimate the fracture compliance than group delays. Using the frequency domain instead of the time domain increases the accuracy of the fracture compliance estimates. We further show that for cases where precise phase delay measurements are unavailable, employing first break times in conjunction with numerical simulations can be considered as an alternative.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2478.2010.00887.x
2010-04-23
2024-04-19
Loading full text...

Full text loading...

References

  1. BartonN.2007. Rock Quality, Seismic Velocity, Attenuation and Anisotropy . Taylor and Francis. ISBN 0415394414.
    [Google Scholar]
  2. JaegerJ.C., CookN.G.W. and ZimmermanR.W.2007. Fundamentals of Rock Mechanics . Blackwell Publishing. ISBN 9780632057597.
    [Google Scholar]
  3. HeapM.J. and FaulknerD.R.2008. Quantifying the evolution of static elastic properties as crystalline rock approaches failure. International Journal of Rock Mechanics and Mining Sciences 45, 564–573. doi:10.1016/j.ijrmms.2007.07.018
    [Google Scholar]
  4. IdingM. and RingroseP.2009. Evaluating the impact of fractures on the long‐term performance of the In Salah CO2 storage site. Energy Procedia 1, 2021–2028. doi:10.1016/j.egypro.2009.01.263
    [Google Scholar]
  5. LongJ.C.S.1996. Rock Fractures and Fluid Flow: Contemporary Understanding and Applications . National Academy Press. ISBN 0309049962.
    [Google Scholar]
  6. LubbeR., SothcottJ., WorthingtonM.H. and McCannC.2008. Laboratory estimates of normal and shear fracture compliance. Geophysical Prospecting 56, 239–247. doi:10.1111/j.1365‐2478.2007.00688.x
    [Google Scholar]
  7. MöllhoffM., BeanC.J. and MeredithP.2003. Mechanical properties of rock fractures derived from ultrasonic and numerical data. Geophysical Research Abstracts 5, 12593.
    [Google Scholar]
  8. MöllhoffM. and BeanC.J.2009. Validation of elastic wave measurements of rock fracture compliance using numerical discrete particle simulations. Geophysical Prospecting 57, 883–895. doi:10.1111/j.1365‐2478.2008.00749.x
    [Google Scholar]
  9. MolyneuxJ.B. and SchmittD.R.1999. First‐break timing: Arrival onset times by direct correlation. Geophysics 64, 1492–1501.
    [Google Scholar]
  10. NagataK., NakataniM. and YoshidaS.2008. Monitoring frictional strength with acoustic wave transmission. Geophysical Research Letters 35, L06310. doi:10.1029/2007GL033146
    [Google Scholar]
  11. NPL Report
    NPL Report2004. Measurement of Acoustic Pulse Waveform and Pressure Distribution Using the NPL Ultrasound Beam Calibrator . Test Report U1999. National Physical Laboratory, Teddington .
    [Google Scholar]
  12. O'BrienG.S. and BeanC.J.2004. A 3D discrete numerical elastic lattice method for seismic wave propagation in heterogeneous media with topography. Geophysical Research Letters 31, L14608. doi:10.1029/2004GL020069
    [Google Scholar]
  13. PapoulisA.1962. The Fourier Integral and Its Applications . McGraw‐Hill. ISBN 0070484473.
    [Google Scholar]
  14. Pyrak‐NolteL.J., CookN.G.W. and MyerL.R.1987. Seismic visibility of fractures. 28th US Symposium on Rock Mechanics, Tucson , 29 June – 1 July, 47–56.
    [Google Scholar]
  15. Pyrak‐NolteL.J., MyerL.R. and CookN.G.W.1990. Transmission of seismic waves across single natural fractures. Journal of Geophysical Research 95, 8617–8638.
    [Google Scholar]
  16. Pyrak‐NolteL.J. and MorrisJ.P.2000. Single fractures under normal stress: The relation between fracture specific stiffness and fluid flow. International Journal of Rock Mechanics and Mining Sciences 37, 245–262.
    [Google Scholar]
  17. SayersC.M.2007. Introduction to this special section: Fractures. The Leading Edge 26, 1102–1105. doi:10.1190/1.2780777
    [Google Scholar]
  18. ScherbaumF.2002. Analysis of digital earthquake signals. In: International Handbook of Earthquake and Engineering Seismology, Volume 81A , pp. 349–355. International Association of the Seismological and Physical Earth's Interior, Committee on Education. ISBN 0‐12‐440652‐1.
    [Google Scholar]
  19. SchoenbergM.1980. Elastic wave behavior across linear slip interfaces. Journal of the Acoustical Society of America68, 1516–1521.
    [Google Scholar]
  20. ScholzC.H.2002. The Mechanics of Earthquakes and Faulting . Cambridge University Press. ISBN 9780521655408.
    [Google Scholar]
  21. ToomeyA., BeanC.J. and ScottiO.2002. Fracture properties from seismic data – a numerical investigation. Geophysical Research Letters 29, 1050. doi:10.1029/2001GL013867
    [Google Scholar]
  22. TsvankinI. and LynnH.B.1999. Special section on azimuthal dependence of P‐wave seismic signatures ‐ Introduction. Geophysics 64, 1139–1142. doi:10.1190/1.1444620
    [Google Scholar]
  23. WitherspoonP.A.2004. Development of underground research laboratories for radioactive waste isolation. In: Proceedings of the Second International Symposium on Dynamics of Fluids in Fractured Rock (eds B. Faybishenko and P.A. Witherspoon), pp. 3–7. Lawrence Berkeley National Laboratory.
    [Google Scholar]
  24. WorthingtonM.H.2007. The compliance of macrofractures. The Leading Edge 26, 1118–1122.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2478.2010.00887.x
Loading
/content/journals/10.1111/j.1365-2478.2010.00887.x
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Compliance; Fracture; Time delay; Transmission coefficient; Ultrasonic

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error