1887
Advances in Electromagnetic, Gravity and Magnetic Methods for Exploration
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

We present a comprehensive review of the most common gravity and magnetic interpretation methods to in depth retrieval of the geometry of geologic bodies associated with a sedimentary basin. We identify three types of bodies: 1) the sedimentary basement relief, 2) salt bodies and 3) mafic intrusions in a sedimentary section. In reconstructing basement topography through gravity and/or magnetic data we identify three groups of methods: the automatic, the spectral and the nonspectral methods. The reconstruction of salt bodies from gravity data usually uses interactive forward modelling but recently gravity inversion methods have been developed to interpret this kind of geologic environment. Finally, the problem of reconstructing intrusive bodies using magnetic and/or gravity data employs three strategies to interpret mafic or ultramafic intrusions in a sedimentary section: the automatic methods, interactive forward modelling and the inversion methods.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2478.2011.00997.x
2011-09-01
2024-04-25
Loading full text...

Full text loading...

References

  1. BarbosaV.C.F. and SilvaJ.B.C.1994. Generalized compact gravity inversion. Geophysics59, 57–68.
    [Google Scholar]
  2. BarbosaV.C.F. and SilvaJ.B.C.2006. Interactive 2D magnetic inversion: A tool for aiding forward modeling and testing geologic hypotheses. Geophysics71, L43–L50.
    [Google Scholar]
  3. BarbosaV.C.F., SilvaJ.B.C. and MedeirosW.E.1997. Gravity inversion of basement relief using approximate equality constraints on depths. Geophysics62, 1745–1757.
    [Google Scholar]
  4. BarbosaV.C.F., SilvaJ.B.C. and MedeirosW.E.1999a. Stability analysis and improvement of structural index estimation in Euler deconvolution. Geophysics64, 48–60.
    [Google Scholar]
  5. BarbosaV.C.F., SilvaJ.B.C. and MedeirosW.E.1999b. Stable inversion of gravity anomalies of sedimentary basins with nonsmooth basement reliefs and arbitrary density contrast variations. Geophysics64, 754–764.
    [Google Scholar]
  6. BearG.W., HaydarJ. and RudmanA.J.1995. Linear inversion of gravity data for 3‐D density distributions. Geophysics60, 1354–1364.
    [Google Scholar]
  7. BeltrãoJ.F., SilvaJ.B.C. and CostaJ.C.1991. Robust polynomial fitting method for regional gravity estimation. Geophysics56, 80–89.
    [Google Scholar]
  8. Bertete‐AguirreH., CherkaevE. and OristaglioM.2002. Non‐smooth gravity problem with total variation penalization functional. Geophysical Journal International149, 499–507.
    [Google Scholar]
  9. BursteddeC. and GhattasO.2009. Algorithmic strategies for full waveform inversion: 1D experiments. Geophysics74, WCC37–WCC46.
    [Google Scholar]
  10. Caratori TontiniF., CocchiL. and CarmiscianoC.2008. Potential‐field inversion for a layer with uneven thickness: The Tyrrhenian Sea density model. Physics of the Earth and Planetary Interiors166, 105–111.
    [Google Scholar]
  11. ChakravarthiV. and SundararajanN.2007. 3D gravity inversion of basement relief –A depth‐dependent density approach. Geophysics72, I23–I32.
    [Google Scholar]
  12. FarquharsonC.G.2008. Constructing piecewise‐constant models in multidimensional minimum‐structure inversions. Geophysics73, K1–K9.
    [Google Scholar]
  13. FediM.1997. Estimation of density, magnetization, and depth to source: A nonlinear and noniterative 3‐D potential‐field method. Geophysics62, 814–830.
    [Google Scholar]
  14. FediM.2007. DEXP: A fast method to determine the depth and the structural index of potential fields sources. Geophysics72, I1–I11.
    [Google Scholar]
  15. FediM., FlorioG. and QuartaT.A.M.2009. Multiridge analysis of potential fields: Geometric method and reduced Euler deconvolution. Geophysics74, L53–L65.
    [Google Scholar]
  16. Gallardo‐DelgadoL.A., Pérez‐FloresM.A. and Gómez‐TreviñoE.2003. A versatile algorithm for joint 3D inversion of gravity and magnetic data. Geophysics68, 949–959.
    [Google Scholar]
  17. GoussevS.A. and PeirceJ.A.2010. Magnetic basement: Gravity‐guided magnetic source depth analysis and interpretation. Geophysical Prospecting58, 321–334.
    [Google Scholar]
  18. GuillenA. and MenichettiV.1984. Gravity and magnetic inversion with minimization of a specific functional. Geophysics49, 1354–1360.
    [Google Scholar]
  19. GuspíF.1993. Noniterative nonlinear gravity inversion. Geophysics58, 935–940.
    [Google Scholar]
  20. HansenR.O. and SimmondsM.1993. Multiple‐source Werner deconvolution. Geophysics58, 1792–1800.
    [Google Scholar]
  21. HartmanR.R., TeskeyD.J. and FriedbergJ.L.1971. A system for rapid digital aeromagnetic interpretation. Geophysics36, 891–918.
    [Google Scholar]
  22. JorgensenG. and KisabethJ.L.2000. Joint 3D inversion of gravity, magnetic and tensor gravity fields for imaging salt formations in the deepwater Gulf of Mexico. 70th SEG meeting, Calgary , Alberta , Canada , Expanded Abstracts, 424–426.
  23. KeatingP. and PilkingtonM.2004. Euler deconvolution of the analytic signal and its application to magnetic interpretation. Geophysical Prospecting52, 165–182.
    [Google Scholar]
  24. KrahenbuhlR.A. and LiY.2006. Inversion of gravity data using a binary formulation. Geophysical Journal International167, 543–556.
    [Google Scholar]
  25. KrahenbuhlR.A. and LiY.2009. Hybrid optimization for lithologic inversion and time‐lapse monitoring using a binary formulation. Geophysics74, I55–I65.
    [Google Scholar]
  26. KuC.C. and SharpJ.A.1983. Werner deconvolution for automated magnetic interpretation and its refinement using Marquardt's inverse modeling. Geophysics48, 754–774.
    [Google Scholar]
  27. LastB.J. and KubikK.1983. Compact gravity inversion. Geophysics48, 713–721.
    [Google Scholar]
  28. LeãoJ.W.D., Menezes, P.T.L., BeltrãoJ.F. and SilvaJ.B.C.1996. Gravity inversion of basement relief constrained by the knowledge of depth at isolated points. Geophysics61, 1702–1714
    [Google Scholar]
  29. LiY. and OldenburgD.W.1996. 3‐D inversion of magnetic data. Geophysics61, 394–408.
    [Google Scholar]
  30. LiY. and OldenburgD.W.1998. 3‐D inversion of gravity data. Geophysics63, 109–119.
    [Google Scholar]
  31. LiY., ShearerS.E., HaneyM.M. and DannemillerN.2010. Comprehensive approaches to 3D inversion of magnetic data affected by remanent magnetization. Geophysics75, L1–L11.
    [Google Scholar]
  32. LimaW.A., MartinsC.M., SilvaJ.B.C. and BarbosaV.C.F.2011. Total variation regularization for depth‐to‐basement estimate: Part 2 – Physicogeologic meaning and comparisons with previous inversion methods. Geophysics76, I13–I20.
    [Google Scholar]
  33. MarquardtD.W.1963. An algorithm for least‐squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics11, 431–441.
    [Google Scholar]
  34. MartinsC.M., BarbosaV.C.F. and SilvaJ.B.C.2010. Simultaneous 3D depth‐to‐basement and density‐contrast estimates using gravity data and depth control at few points. Geophysics75, I21–I28.
    [Google Scholar]
  35. MartinsC.M., LimaW.A., BarbosaV.C.F. and SilvaJ.B.C.2011. Total variation regularization for depth‐to‐basement estimate: Part 1 – Mathematical details and applications. Geophysics76, I1–I12.
    [Google Scholar]
  36. MoraesR.A.V. and HansenR.O.2001. Constrained inversion of gravity fields for complex 3D structures. Geophysics66, 501–510.
    [Google Scholar]
  37. MushayandebvuM.F., LesurV., ReidA.B. and FairheadJ.D.2004. Grid Euler deconvolution with constraints for 2‐D structures. Geophysics69, 489–496.
    [Google Scholar]
  38. MushayandebvuM.F., Van DrielP., ReidA.B. and FairheadJ.D.2001. Magnetic source parameters of two‐dimensional structures using extended Euler deconvolution. Geophysics66, 814–823.
    [Google Scholar]
  39. NabighianM.N., AnderM.E., GrauchV.J.S., HansenR.O., LaFehrT.R., LiY. et al . 2005. Historical development of the gravity method in exploration. Geophysics70, 63ND–89ND.
    [Google Scholar]
  40. NagiharaS. and HallS.A.2001. Three‐dimensional gravity inversion using simulated annealing: Constraints on the diapiric roots of allochthonous salt structures. Geophysics66, 1438–1449.
    [Google Scholar]
  41. NaudyH.1971. Automatic determination of depth on aeromagnetic profiles. Geophysics36, 717–722.
    [Google Scholar]
  42. NunesT.M., BarbosaV.C.F. and SilvaJ.B.C.2008. Magnetic basement depth inversion in the space domain. Pure and Applied Geophysics165, 1891–1911.
    [Google Scholar]
  43. O’BrienD.P.1972. CompuDepth – A new method for depth‐to‐basement calculation. 42nd SEG meeting, Anaheim , California , USA , Expanded Abstracts.
  44. OezsenR.2004. Velocity modelling and prestack depth imaging below complex salt structures: A case history from on‐shore Germany. Geophysical Prospecting52, 693–705.
    [Google Scholar]
  45. OldenburgD.W.1974. The inversion and interpretation of gravity anomalies. Geophysics39, 526–536.
    [Google Scholar]
  46. OstrowskiJ.A., PilkingtonM. and TeskeyD.J.1993. Werner deconvolution for variable altitude aeromagnetic data. Geophysics58, 1481–1490.
    [Google Scholar]
  47. ParkerR.L.1973. The rapid calculation of potential anomalies. Geophysical Journal of the Royal Astronomical Society31, 447–455.
    [Google Scholar]
  48. PhillipsJ.D.1997. Potential‐field geophysical software for the PC, version 2.2. US Geological Survey Open‐File Report 97–725.
  49. PilkingtonM.2006. Joint inversion of gravity and magnetic data for two‐layer models. Geophysics71, L35–L42.
    [Google Scholar]
  50. PilkingtonM.2009. 3D magnetic data‐space inversion with sparseness constraints. Geophyisics74, L7–L15.
    [Google Scholar]
  51. PilkingtonM. and CrossleyD.J.1986. Determination of crustal interface topography from potential fields. Geophysics51, 1277–1284.
    [Google Scholar]
  52. PortniaguineO. and ZhdanovM.S.1999. Focusing geophysical inversion images. Geophysics64, 874–887.
    [Google Scholar]
  53. PortniaguineO. and ZhdanovM.S.2002. 3‐D magnetic inversion with data compression and image focusing. Geophysics67, 1532–1541.
    [Google Scholar]
  54. RaoB.S.R., Radhakrishna MurthyI.V. and Visweswara RaoC.1975. A successive approximation method of deriving residual gravity. Geoexploration13, 129–135
    [Google Scholar]
  55. ReidA.B., AllsopJ.M., GranserH., MillettA.J. and SomertonI.W.1990. Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics55, 80–91.
    [Google Scholar]
  56. RichardsonM.R. and MacInnesS.C.1989. The inversion of gravity data into three‐dimensional polyhedral models. Journal of Geophysical Research94, 7555–7562.
    [Google Scholar]
  57. RouthP.S., JorgensenG.J. and KisabethJ.L.2001. Base of the salt imaging using gravity and tensor Gravity data. 71st SEG meeting, San Antonio , Texas , USA , Expanded Abstracts, 1482–1484.
  58. RudinL.OsherS. and FatemiE.1992. Nonlinear total variation based noise removal algorithms. Physica D60, 259–268.
    [Google Scholar]
  59. SalemA. and RavatD.2003. A combined analytic signal and Euler method (AN‐EUL) for automatic interpretation of magnetic data. Geophysics68, 1952–1961.
    [Google Scholar]
  60. SalemA., WilliamsS.E., FairheadJ.D., SmithR. and RavatD.2008. Interpretation of magnetic data using tilt‐angle derivatives. Geophysics73, L1–L10.
    [Google Scholar]
  61. SilvaJ.B.C. and BarbosaV.C.F.2003. 3D Euler deconvolution: Theoretical basis for automatically selecting good solutions. Geophysics68, 1962–1968.
    [Google Scholar]
  62. SilvaJ.B.C. and BarbosaV.C.F.2004. Generalized radial inversion of 2D potential field data. Geophysics69, 1405–1413.
    [Google Scholar]
  63. SilvaJ.B.C. and BarbosaV.C.F.2006. Interactive gravity inversion. Geophysics71, J1–J9.
    [Google Scholar]
  64. SilvaJ.B.C., BarbosaV.C.F. and MedeirosW.E.2001a. Scattering, symmetry, and bias analysis of source position estimates in Euler deconvolution and its practical implications. Geophysics66, 1149–1156.
    [Google Scholar]
  65. Silva DiasF.J.S., BarbosaV.C.F. and SilvaJ.B.C.2007. 2D gravity inversion of a complex interface in the presence of interfering sources. Geophysics72, I13–I22.
    [Google Scholar]
  66. Silva DiasF.J.S., BarbosaV.C.F. and SilvaJ.B.C.2009. 3D gravity inversion through an adaptive learning procedure. Geophysics74, I9–I21.
    [Google Scholar]
  67. Silva DiasF.J.S., BarbosaV.C.F. and SilvaJ.B.C.2011. Adaptive learning 3D gravity inversion for salt body imaging. Geophysics76, I49–I57.
    [Google Scholar]
  68. SilvaJ.B.C., MedeirosW.E. and BarbosaV.C.F.2001b. Pitfalls in nonlinear inversion. Pure and Applied Geophysics158, 945–964.
    [Google Scholar]
  69. SilvaJ.B.C., MedeirosW.E. and BarbosaV.C.F.2001c. Potential‐field inversion: Choosing the appropriate technique to solve a geologic problem. Geophysics66, 511–520.
    [Google Scholar]
  70. SilvaJ.B.C., MedeirosW.E. and BarbosaV.C.F.2002. Practical applications of uniqueness theorems in gravimetry: Part I – Constructing sound interpretation methods. Geophysics67, 788–794.
    [Google Scholar]
  71. SilvaJ.B.C., OliveiraA.S. and BarbosaV.C.F.2010. Gravity inversion of 2D basement relief using entropic regularization. Geophysics75, I29–I35.
    [Google Scholar]
  72. SpectorA. and GrantF.1970. Statistical models for interpreting aeromagnetic data. Geophysics35, 293–302.
    [Google Scholar]
  73. StarichP.J., LewisG.G., FaulknerJ., StandleyP.G. and SetterquistS.1994. Integrated geophysical study of an onshore salt dome. The Leading Edge13, 880–884.
    [Google Scholar]
  74. SybergF.J.R.1972. A Fourier method for the regional‐residual problem of potential fields. Geophysical Prospecting20, 47–75.
    [Google Scholar]
  75. ThompsonD.T.1982. EULDPH: A new technique for making computer‐assisted depth estimates from magnetic data. Geophysics47, 31–37.
    [Google Scholar]
  76. ThurstonJ.B. and SmithR.S.1997. Automated conversion of magnetic data to depth, dip and susceptibility contrast using the SPI ™ method. Geophysics62, 807–813
    [Google Scholar]
  77. TikhonovA.N. and ArseninV.Y.1977. Solutions of Ill‐posed Problems . Winston and Sons.
    [Google Scholar]
  78. VogelC.R. and OmanM.E.1998. Fast, robust total variation‐based reconstruction of noisy blurred images. IEEE Transactions on Image Processing7, 813–824.
    [Google Scholar]
  79. WernerS.1953. Interpretation of magnetic anomalies at sheet‐like bodies. Sveriges Geologiska Undersökning, Ser. C, Arsbok43(6).
    [Google Scholar]
  80. YargerH., DeKayL. and HenselE.G.2001. Salt canopy modeling with gravity in deepwater Gulf of Mexico. 71st SEG meeting, San Antonio , Texas , USA , Expanded Abstracts, 1478–1482.
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2478.2011.00997.x
Loading
/content/journals/10.1111/j.1365-2478.2011.00997.x
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Interpretation; Inverse problem; Modelling; Potential field; Sedimentary basin

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error