1887
Volume 23, Issue 2
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

High‐resolution seismic imaging and coring in Lago Fagnano, located along a plate boundary in Tierra del Fuego, have revealed a dated sequence of Holocene mass‐wasting events. These structures are interpreted as sediment mobilizations resulting from loading of the slope‐adjacent lake floor during mass‐flow deposition. More than 19 mass‐flow deposits have been identified, combining results from 800 km of gridded seismic profiles used to site sediment cores. Successions of up to 6‐m thick mass‐flow deposits, pond atop the basin floor and spread eastward and westward following the main axis of the eastern sub‐basin of Lago Fagnano. We developed an age model, on the basis of information from previous studies and from new AMS‐14C ages on cored sediments, which allows us to establish a well‐constrained chronologic mass‐wasting event‐catalogue covering the last ∼12 000 years. Simultaneously triggered, basin‐wide lateral slope failure and the formation of multiple debris flow and postulated megaturbidite deposits are interpreted as the fingerprint of paleo‐seismic activity along the Magallanes‐Fagnano transform fault that runs along the entire lake basin. The slope failures and megaturbidites are interpreted as recording large earthquakes occurring along the transform fault since the early Holocene. The results from this study provide new data about the frequency and possible magnitude of Holocene earthquakes in Tierra del Fuego, which can be applied in the context of seismic hazard assessment in southernmost Patagonia.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2010.00489.x
2010-07-22
2024-03-29
Loading full text...

Full text loading...

References

  1. Allen, C.R., Gillespie, A.R., Han, Y.A., Sieh, K.E., Zhang, B.C. & Zhu, C.N. (1984) Red river and associated faults, Yunnan province, China – Quaternary geology, slip rates, and seismic hazard. Geol. Soc. Am. Bull., 95, 686–700.
    [Google Scholar]
  2. Ambraseys, N.N. & Finkel, C.F. (1991) Long‐term seismicity of Istanbul and of the Marmara sea region. Terra Nova, 3, 527–539.
    [Google Scholar]
  3. Beck, C., Manalt, F., Chapron, E., Van Rensbergen, P. & De Batist, M. (1996) Enhanced seismicity in the early post‐glacial period: evidence from the post-würm sediments of Lake Annecy, Northwestern Alps. J. Geodyn, 22, 155–171.
    [Google Scholar]
  4. Beck, C., Mercier de Lepinay, B., Schneider, J.‐L., Cremer, M., Cagatay, N., Wendenbaum, E., Boutareaud, S. & Menot, G. (2007) Late quaternary co‐seismic sedimentation in the sea of Marmara's deep basins. Sediment. Geol., 199, 65–89.
    [Google Scholar]
  5. Begin, Z.B., Steinberg, D.M., Ichinose, G.A. & Marco, S. (2005) A 40,000 year unchanging seismic regime in the dead sea rift. Geology, 33, 257–260.
    [Google Scholar]
  6. Behrmann, J.H. & Kopf, A. (2001) Balance of tectonically accreted and subducted sediment at the Chile triple junction. Int. J. Earth Sci., 90, 753–768.
    [Google Scholar]
  7. Bookman, R., Driscoll, C.T., Engstrom, D.R. & Effler, S.W. (2008) Local to regional emission sources affecting mercury fluxes to New York lakes. Atmos. Environ., 42, 6088–6097.
    [Google Scholar]
  8. Bouma, A. (1962) Sedimentology of Some Flysch Deposits: A Graphic Approach to Facies Interpretation. Elsevier, Amsterdam.
    [Google Scholar]
  9. Bouma, A. (1987) Megaturbidite: an acceptable term? Geo‐Mar. Lett., 7, 63–67. doi: DOI: 10.1007/BF02237985.
    [Google Scholar]
  10. Bujalesky, G.G., Heusser, C.J., Coronato, A.M., Roig, C.E. & Rabassa, J.O. (1997) Pleistocene Glaciolacustrine sedimentation at Lago Fagnano, Andes of Tierra Del Fuego, Southernmost South America. Quat. Sci. Rev., 16, 767–778.
    [Google Scholar]
  11. Chapron, E., Beck, C., Pourchet, M. & Deconinck, J.F. (1999) 1822 earthquake‐triggered Homogenite in Lake Le Bourget (Nw Alps). Terra Nova, 11, 86–92.
    [Google Scholar]
  12. Chapron, E., Van Rensbergen, P., Beck, C., De Batist, M. & Paillet, A. (1996) Lacustrine sedimentary record of Brutal events in Lake Le Bourget (Northwestern Alps‐Southern Jura). Quaternaire, 7, 155–168.
    [Google Scholar]
  13. Coronato, A., Seppälä, M., Ponce, F. & Rabassa, J. (2009) Glacial geomorphology of the Pleistocene Lake Fagnano Ice Lobe, Tierra Del Fuego, Southern South America: alpine and lowland glacial landscape. Geomorphology, 112, 67–81.
    [Google Scholar]
  14. Costa, C.H., Smalley, J.R., Schwartz, D.P., Stenner, H.D., Ellis, M., Ahumada, E.A. & Velasco, M.A. (2006) Paleoseismic observations of an onshore transform boundary: the Magallanes-Fagnano fault, Tierra Del Fuego, Argentina. Rev. Asoc. Geol. Argentina, 61, 647–657.
    [Google Scholar]
  15. Cunningham, W.D. (1993) Strike‐slip faults in the Southernmost Andes and the development of the Patagonian Orocline. Tectonics, 12, 169–186.
    [Google Scholar]
  16. DeMets, C.R., Gordon, R.G., Argus, D. & Stein, S. (1990) Current plate motions. Geophys. J. Int., 101, 425–478.
    [Google Scholar]
  17. Donda, F., O'Brien, P.E., De Santis, L., Rebesco, M. & Brancolini, G. (2008) Mass wasting processes in the Western Wilkes land margin: possible implications for East Antarctic glacial history. Palaeogeogr. Palaeoclimatol. Palaeoecol., 260, 77–91.
    [Google Scholar]
  18. Ettensohn, F.R., Rast, N. & Brett, C.E. (2002) Ancient Seismites. 359. Geological Society of America, Boulder.
    [Google Scholar]
  19. Fanetti, D., Anselmetti, F.S., Chapron, E., Sturm, M. & Vezzoli, L. (2008) Megaturbidite deposits in the Holocene basin fill of Lake Como (Southern Alps, Italy). Palaeogeogr. Palaeoclimatol. Palaeoecol., 259, 323–340. doi: DOI: 10.1016/j.palaeo.2007.10.014.
    [Google Scholar]
  20. Farr, T.G., Rosen, P.A., Caro, E., Crippen, R., Duren, R. & Hensley, S. (2007) The Shuttle radar topography mission. Rev. Geophys., 45. RG2004, doi: DOI: 10.1029/2005rg000183.
    [Google Scholar]
  21. Febrer, J.M., Plasencia, M.P. & Sabbione, N.C. (2000) Local and regional seismicity from Ushuaia broadband station observations (Tierra del Fuego). Terra Antarct., 8, 35–40.
    [Google Scholar]
  22. Finckh, P., Kelts, K. & Lambert, A. (1984) Seismic stratigraphy and Bedrock forms in Perialpine Lakes. Geol. Soc. Am. Bull., 95, 1118–1128.
    [Google Scholar]
  23. Garfunkel, Z. (1981) Internal structure of the dead Sea Leaky transform (Rift) in relation to plate kinematics. Tectonophysics, 80, 81–108.
    [Google Scholar]
  24. Girardclos, S., Fiore, J., Rachoud‐Schneider, A.‐M., Baster, I.R.A. & Wildi, W. (2005) Petit‐Lac (Western Lake Geneva) environment and climate history from deglaciation to the present: a synthesis. Boreas, 34, 417–433. doi: DOI: 10.1080/03009480500231385.
    [Google Scholar]
  25. Goldfinger, C., Morey, A.E., Nelson, C.H., Gutiérrez‐Pastor, J., Johnson, J.E., Karabanov, E., Chaytor, J. & Eriksson, A. (2007) Rupture lengths and temporal history of significant earthquakes on the offshore and north coast segments of the Northern San Andreas fault based on turbidite stratigraphy. Earth Planet. Sci. Lett., 254, 9–27.
    [Google Scholar]
  26. Goldfinger, C., Nelson, C.H. & Johnson, J.E., Shipboard Sci Party . (2003) Holocene earthquake records from the Cascadia Subduction Zone and Northern San Andreas fault based on precise dating of offshore turbidites. Annu. Rev. Earth Planet. Sci., 31, 555–577. doi: DOI: 10.1146/annurev.earth.31.100901.141246.
    [Google Scholar]
  27. Gordillo, S., Bujalesky, G.G., Pirazzoli, P.A., Rabassa, J.O. & Saliege, J.F. (1992) Holocene raised beaches along the Northern Coast of the Beagle Channel, Tierra‐Del‐Fuego, Argentina. Palaeogeogr. Palaeoclimatol. Palaeoecol., 99, 41–54.
    [Google Scholar]
  28. Gordillo, S., Coronato, A.M.J. & Rabassa, J.O. (1993) Late quaternary evolution of a Subantarctic Paleofjord, Tierra Del Fuego. Quat. Sci. Rev., 12, 889–897.
    [Google Scholar]
  29. Grant, L.B. & Sieh, K. (1994) Paleoseismic evidence of clustered earthquakes on the San Andreas fault in the Carrizo Plain, California. J. Geophys. Res., 99 (B4), 6819–6841.
    [Google Scholar]
  30. Guyard, A., St‐Onge, G., Chapron, E., Anselmetti, F.S. & Francus, P. (2007) The AD 1881 earthquake‐triggered slump and late holocene flood‐induced Turbidites from Proglacial Lake Bramant, Western French Alps. In: Submarine Mass Movements and their Consequences (Ed. by V.Lykousis , D.Sakellariou & J.Locat ), pp. 279–286. Springer, Berlin.
    [Google Scholar]
  31. Hjelstuen, B.O., Haflidason, H., Sejrup, H.P. & Lysa, A. (2009) Sedimentary processes and depositional environments in Glaciated Fjord systems – evidence from Nordfjord, Norway. Mar. Geol., 258, 88–99. doi: DOI: 10.1016/j.margeo.2008.11.010.
    [Google Scholar]
  32. Hogan, P. (2009) World Wind, Nasa Ames Research Center. Available at: http://www.worldwind.arc.nasa.gov. Retrieved January 12, 2009.
  33. Jacoby, G.C., Sheppard, P.R. & Sieh, K.E. (1988) Irregular recurrence of large earthquakes along the San‐Andreas fault – evidence from trees. Science, 241, 196–199.
    [Google Scholar]
  34. Jaschek, E., Sabbione, N. & Sierra, P. (1982) Reubicación De Sismos Localizados En Territorio Argentino (1920–1963). S. Geofísica, Observatorio Astronómico de la Universidad Nacional de La Plata. Tomo XI, No. 1.
  35. Kastens, K.A. & Cita, M.B. (1981) Tsunami‐induced sediment transport in the Abyssal Mediterranean‐Sea. Geol. Soc. Am. Bull., 92, 845–857.
    [Google Scholar]
  36. Kelts, K. & Hsu, K.J. (1980) Resedimented facies of 1875 Horgen Slumps in Lake Zurich and a process model of longitudinal transport of turbidity currents. Eclo. Geol. Helv., 74, 271–281.
    [Google Scholar]
  37. Ken‐Tor, R., Agnon, A., Enzel, Y., Stein, M., Marco, S. & Negendank, J.F.W. (2001) High‐resolution geological record of historic earthquakes in the Dead Sea basin. J. Geophys. Res., 106 (B2), 2221–2234.
    [Google Scholar]
  38. Klepeis, K.A. (1994) The Magallanes and Deseado fault zones: major segments of the South American-Scotia transform plate boundary in Southernmost South America, Tierra Del Fuego. J. Geophys. Res., 99, 22001–22014.
    [Google Scholar]
  39. Koinig, K.A., Shotyk, W., Lotter, A.F., Ohlendorf, C. & Sturm, M. (2003) 9000 years of geochemical evolution of lithogenic major and trace elements in the sediment of an Alpine Lake – the role of climate, vegetation, and land‐use history. J. Paleolimnol., 30, 307–320.
    [Google Scholar]
  40. Lodolo, E., Menichetti, M., Bartole, R., Ben‐Avraham, Z., Tassone, A. & Lippai, H. (2003) Magallanes‐Fagnano continental transform fault (Tierra Del Fuego, Southernmost South America). Tectonics, 22, 1076–1102.
    [Google Scholar]
  41. Lodolo, E., Menichetti, M., Tassone, A., Geletti, R., Sterzai, P., Lippai, H. & Hormaechea, J.L. (2002) Researchers target a continental transform fault in Tierra Del Fuego. EOS Trans. AGU, 83 (1), 1–6.
    [Google Scholar]
  42. Lomnitz, C. (1970) Major earthquakes and Tsunamis in Chile during the period 1535–1955. Int. J. Earth Sci., 59, 938–960.
    [Google Scholar]
  43. Marco, S. & Agnon, A. (1995) Prehistoric earthquake deformations near Masada, Dead‐Sea Graben. Geology, 23, 695–698.
    [Google Scholar]
  44. Masson, D.G., Harbitz, C.B., Wynn, R.B., Pedersen, G. & Løvholt, F. (2007) Submarine landslides: processes, triggers and hazard prediction. Philos. Trans. Roy. Soc. A: Math. Phys. Eng. Sci., 364, 2009–2039. doi: DOI: 10.1098/rsta.2006.1810.
    [Google Scholar]
  45. McCulloch, R.D., Bentley, M.J., Tipping, R.M. & Clapperton, C.M. (2005) Evidence for late‐glacial ice dammed lakes in the Central strait of Magellan and Bahia Inutil, Southernmost South America. Geogr. Ann., Ser. A: Phys. Geogr., 87, 335–362. doi: DOI: 10.1111/j.0435-3676.2005.00262.x.
    [Google Scholar]
  46. Menichetti, M., Lodolo, E., Tassone, A. & Geletti, R. (2001) Neotectonics at the Magallanes‐Fagnano Fault System (Tierra Del Fuego Island). Antarctic Neotectonics Workshop, Siena.
    [Google Scholar]
  47. Migowski, C., Agnon, A., Bookman (Ken‐Tor), R., Negendank, J.F.W. & Stein, M. (2004) Recurrence pattern of holocene Earthquakes along the Dead Sea transform revealed by varve‐counting and radiocarbon dating of lacustrine sediments. Earth Planet. Sci. Lett., 222, 301–314.
    [Google Scholar]
  48. Moernaut, J., De Batist, M., Charlet, F., Heirman, K., Chapron, E., Pino, M., Brummer, R. & Urrutia, R. (2007) Giant earthquakes in South‐Central Chile revealed by Holocene mass‐wasting events in Lake Puyehue. Sediment. Geol., 195, 239–256. doi: DOI: 10.1016/j.sedgeo.2006.08.005.
    [Google Scholar]
  49. Monecke, K., Anselmetti, F.S., Becker, A., Schnellmann, M., Sturm, M. & Giardini, D. (2006) Earthquake‐induced deformation structures in lake deposits: a late Pleistocene to Holocene Paleoseismic record for Central Switzerland. Eclo. Geol. Helv., 99, 343–362. doi: DOI: 10.1007/s00015-006-1193-x.
    [Google Scholar]
  50. Monecke, K., Anselmetti, F.S., Becker, A., Sturm, M. & Giardini, D. (2004) The record of historic earthquakes in lake sediments of Central Switzerland. Tectonophysics, 394, 21–40.
    [Google Scholar]
  51. Moretti, M., Alfaro, P., Caselles, O. & Canas, J.A. (1999) Modelling seismites with a digital shaking table. Tectonophysics, 304, 369–383.
    [Google Scholar]
  52. Moy, C.M., Dunbar, R.B., Moreno, P.I., Francois, J.‐P., Villa‐Martínez, R., Mucciarone, D.M., Guilderson, T.P. & Garreaud, R.D. (2008) Isotopic evidence for hydrologic change related to the Westerlies in Sw Patagonia, Chile, during the last millennium. Quat. Sci. Rev., 27, 1335–1349.
    [Google Scholar]
  53. Mulder, T. & Alexander, J. (2001) The physical character of subaqueous sedimentary density flows and their deposits. Sedimentology, 48, 269–299.
    [Google Scholar]
  54. Nakajima, T. & Kanai, Y. (2000) Sedimentary features of seismoturbidites triggered by the 1983 and older historical earthquakes in the Eastern Margin of the Japan Sea. Sediment. Geol., 135, 1–19.
    [Google Scholar]
  55. Nesje, A. & Sejrup, H.P. (1988) Late Weichselian Devensian ice sheets in the North‐Sea and adjacent land areas. Boreas, 17, 371–384.
    [Google Scholar]
  56. Oleskevich, D.A., Hyndman, R.D. & Wang, K. (1999) The updip and downdip limits to great subduction earthquakes: thermal and structural models of Cascadia, South Alaska, Sw Japan, and Chile. J. Geophys. Res., 104, 14965–14992.
    [Google Scholar]
  57. Parsons, B., Wright, T., Rowe, P., Andrews, J., Jackson, J., Walker, R., Khatib, M., Talebian, M., Bergman, E. & Engdahl, E.R. (2006) The 1994 Sefidabeh (Eastern Iran) earthquakes revisited: new evidence from satellite Radar interferometry and carbonate dating about the growth of an active fold above a blind thrust fault. Geophys. J. Int., 164, 202–217. doi: DOI: 10.1111/j.1365-246X.2005.02655.X.
    [Google Scholar]
  58. Piper, D.J.W., Cochonat, P. & Morrison, M.L. (1999) The sequence of events around the Epicentre of the 1929 Grand Banks earthquake: initiation of debris flows and turbidity current inferred from Sidescan Sonar. Sedimentology, 46, 79–97.
    [Google Scholar]
  59. Prentice, I.C., Guiot, J. & Harrison, S.P. (1992) Mediterranean vegetation, lake levels and Palaeoclimate at the last glacial maximum. Nature, 360, 658–660.
    [Google Scholar]
  60. Ricci Lucchi, F. (1995) Sedimentological indicators of paleoseismicity. In: Perspectives in Paleoseismology, Vol. 6 (Ed. by L.Serva & D.B.Slemmons ), pp. 7–17. Association of Engineering Geologists Special Publication, London.
    [Google Scholar]
  61. Schnellmann, M., Anselmetti, F.S., Giardini, D. & McKenzie, J.A. (2005) Mass movement‐induced fold‐and‐thrust belt structures in unconsolidated sediments in Lake Lucerne (Switzerland). Sedimentology, 52, 271–289. doi:DOI: 10.1111/j.1365-3091.2004.00694.x.
    [Google Scholar]
  62. Schnellmann, M., Anselmetti, F.S., Giardini, D., McKenzie, J.A. & Ward, S.N. (2002) Prehistoric earthquake history revealed by Lacustrine slump deposits. Geology, 30, 1131–1134.
    [Google Scholar]
  63. Scholz, C.A. & Rosendahl, B.R. (1988) Low lake stands in Lakes Malawi and Tanganyika, East Africa, delineated with multifold seismic data. Science, 240, 1645–1648. doi: DOI: 10.1126/science.240.4859.1645.
    [Google Scholar]
  64. Shanmugam, G. (1997) The Bouma sequence and the Turbidite Mind Set. Earth-Sci. Rev., 42, 201–229.
    [Google Scholar]
  65. Shiki, T., Cita, M.B. & Gorsline, D.S. (2000) Sedimentary features of seismites, seismo‐turbidites and tsunamiites – an introduction. Sediment. Geol., 135, VII–IX.
    [Google Scholar]
  66. Shteinman, B., Eckert, W., Kaganowsky, S. & Zohary, T. (1997) Seiche‐induced resuspension in Lake Kinneret: a fluorescent tracer experiment. Water Air Soil Pollut., 99, 123–131.
    [Google Scholar]
  67. Siegenthaler, C., Finger, W., Kelts, K. & Wang, S. (1987) Earthquake and seiche deposits in Lake Lucerne, Switzerland. Eclo. Geol. Helv., 80, 241–260.
    [Google Scholar]
  68. Siegenthaler, C. & Sturm, M. (1991) Slump induced surges and sediment transport in Lake Uri, Switzerland. Int. Assoc. Theor. Appl. Limnol. – Proc., 24 (2), 955–958.
    [Google Scholar]
  69. Sims, J.D. (1975) Determining earthquake recurrence intervals from deformational structures in young lacustrine sediments. Tectonophysics, 29, 141–152.
    [Google Scholar]
  70. Stern, C.R. (2008) Holocene tephrochronology record of large explosive eruptions in the Southernmost Patagonian Andes. Bull. Volcanol., 70, 435–454.
    [Google Scholar]
  71. St‐Onge, G., Mulder, T., Piper, D.J.W., Hillaire‐Marcel, C. & Stoner, J.S. (2004) Earthquake and flood‐induced turbidites in the Saguenay Fjord (Quebec): a holocene paleoseismicity record. Quat. Sci. Rev., 23, 283–294. doi: DOI: 10.1016/j.quascirev.2003.03.001.
    [Google Scholar]
  72. Strasser, M. & Anselmetti, F.S. (2008) Mass‐movement event stratigraphy in Lake Zurich; a record of varying seismic and environmental impacts. Beiträge zur Geol. Schw., Geotechn. Ser., 95, 23–41.
    [Google Scholar]
  73. Strasser, M., Anselmetti, F.S., Fah, D., Giardini, D. & Schnellmann, M. (2006) Magnitudes and source areas of large prehistoric Northern Alpine earthquakes revealed by slope failures in Lakes. Geology, 34, 1005–1008.
    [Google Scholar]
  74. Strasser, M., Stegmann, S., Bussmann, F., Anselmetti, F.S., Rick, B. & Kopf, A. (2007) Quantifying subaqueous slope stability during seismic shaking: Lake Lucerne as model for ocean margins. Mar. Geol., 240, 77–97.
    [Google Scholar]
  75. Syvitski, J.P.M. & Schafer, C.T. (1996) Evidence for an earthquake‐triggered basin collapse in Saguenay Fjord, Canada. Sediment. Geol., 104, 127–153.
    [Google Scholar]
  76. Van Rensbergen, P., de Batist, M., Beck, C. & Chapron, E. (1999) High‐resolution seismic stratigraphy of glacial to interglacial fill of a deep Glacigenic Lake: lake Le Bourget, Northwestern Alps, France. Sediment. Geol., 128, 99–129.
    [Google Scholar]
  77. Vuan, A., Cazzaro, R., Costa, G., Russi, M. & Panza, G.F. (1999) S‐wave velocity models in the Scotia Sea region, Antarctica, from nonlinear inversion of Rayleigh waves dispersion. Pure Appl. Geophys., 154, 121–139.
    [Google Scholar]
  78. Waldmann, N., Ariztegui, D., Anselmetti, F.S., Austin, J.J.A., Dunbar, R., Moy, C.M. & Recasens, C. (2008) Seismic stratigraphy of Lago Fagnano sediments (Tierra Del Fuego, Argentina) – a potential archive of Paleoclimatic change and tectonic activity since the Late Glacial. Geol. Acta, 6, 101–110.
    [Google Scholar]
  79. Waldmann, N., Ariztegui, D., Anselmetti, F.S., Austin, J.J.A., Moy, C.M., Stern, C., Recasens, C. & Dunbar, R. (in press) Holocene climatic fluctuations and positioning of the Southern Hemisphere westerlies in Tierra Del Fuego (54°S), Patagonia. J. Quat. Sci. Doi: DOI: 10.1002/jgs.1263.
    [Google Scholar]
  80. Waldmann, N., Ariztegui, D., Anselmetti, F.S., Coronato, A. & Austin, J.J.A. (2010) Geophysical evidence of multiple glacier advances in Lago Fagnano (54°S), Southernmost Patagonia. Quat. Sci. Rev.. doi: DOI: 10.1016/j.quascirev.2010.01.016.
    [Google Scholar]
  81. Wallace, R.E. (1970) Earthquake recurrence intervals on San‐Andreas fault. Geol. Soc. Am. Bull., 81, 2875–2889.
    [Google Scholar]
  82. Weninger, B., Jöris, O. & Danzeglocke, U. (2009) Calpal, Cologne Radiocarbon Calibration & Palaeoclimate Research Package. Available at: http://www.calpal‐online.de/. Retrieved January 12, 2009.
  83. Winslow, M.A. (1982). The structural evolution of the Magallanes Basin and Neotectonics in the Southernmost Andes. Antarctic Geoscience. 3rd symposium on Antarctic geology and geophysics, Madison.
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2010.00489.x
Loading
/content/journals/10.1111/j.1365-2117.2010.00489.x
Loading

Data & Media loading...

Supplements

Un‐interpreted (left) and interpreted (right) SW‐NE (a) and N‐S (b) 3.5 kHz sections crossing the eastern sub‐basin (location of profiles in Fig. 1). Positions of cores are also labeled. EC and EB in the lower figure represent the different seismic units. Sediment depth is given in milliseconds of two‐way traveltime (TWTT). We convert these travel‐times to sub‐lake level depth (m) based on a P‐wave velocity of 1430 m s for water and 1500 m s for sediment. The different color horizons stand for the different mass‐wasting deposits. Notice the different vertical exaggeration in both profiles. a) and b) un‐interpreted (above) and interpreted (below) E‐W 3.5 kHz sections crossing the entire eastern sub‐basin of the lake longitudinally (see Fig. 1d in the main article for location). Core positions are labeled. EC and EB represent the different seismic stratigraphic units. Sediment depth is given in milliseconds of two‐way traveltime (TWTT), which we convert to sub‐lake level depth (m) based on a P‐wave velocity of 1430 m s for water and 1500 m s for sediment. Notice the different vertical exaggeration in both profiles. See legend for the mass‐wasting deposit horizons in Fig. 1 of supplementary material.Please note: Wiley‐Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.

Supporting info item

Supporting info item

Supporting info item

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error