1887
Volume 23, Issue 3
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

We analysed modern mass‐accumulation patterns on the western Adriatic mud wedge (Italy), an elongated belt of shelf mud formed by coalesced prodeltas of the Adige, Po, and Apennine rivers, as part of an integrated strategy aimed at producing a quantitative sediment budget model for muddy continental shelves sourced by multiple compositionally distinct fluvial systems. Sediment provenance and source‐specific accumulation rates of surface sediments were quantified by combining results of grain‐size analysis and geochemical analysis of specific size fractions with bulk mass accumulation rates. Statistical classification algorithms adapted to compositional data were used to partition the total (geochemical) variation of sediment properties into size‐related and provenance‐specific factors. We identified geochemically distinct fluvial end‐member sediment types in two different grain‐size fractions, which were grouped into sediments derived from the Apennine rivers, and sediments derived from the Po and Adige rivers. Compositional fingerprints (end‐member compositions) of each source area were estimated by taking into account relative rates of fluvial sediment supply from rivers as predicted by numerical modelling. The end members allow us to explain geochemical compositional variation of mud‐wedge surface sediments in terms of provenance and size‐selective dispersal, and map mass accumulation rates of sediments from individual source areas (grain size<63 μm), as well as bulk sand accumulation rates (grain size>63 μm) across the western Adriatic mud wedge. The source‐specific rates of fine‐grained sediment supply derived from geostatistical estimates of mass‐accumulation rates were used to calibrate the numerical model of sediment supply to present‐day conditions.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2010.00484.x
2011-04-20
2024-03-29
Loading full text...

Full text loading...

References

  1. Aitchison, J. (1986) The Statistical Analysis of Compositional Data. Chapman & Hall, London.
    [Google Scholar]
  2. Asioli, A., Trincardi, F., Lowe, J.J., Ariztegui, D., Langone, L. & Oldfield, F. (2001) Sub‐millennial scale climate oscillations in the central Adriatic during the Late glacial: palaeoceanographic implications. Quat. Sci. Rev., 20, 1202–1221.
    [Google Scholar]
  3. Bass, S.J., Aldridge, J.N., Mccave, I.N. & Vincent, C.E. (2002) Phase relationships between fine sediment suspensions and tidal currents in coastal seas. J. Geophys. Res., 107 (C10), 3146–3160.
    [Google Scholar]
  4. Blatt, H. (1985) Provenance studies and mudrocks. J. Sediment. Petrol., 55, 69–75.
    [Google Scholar]
  5. Bondesan, M., Castiglioni, G.B., Elmi, C., Gabbianelli, G., Marocco, R., Pirazolli, P.A. & Tomasin, A. (1995) Coastal areas at risk from storm surges and sea‐level rise in north‐eastern Italy. J. Coastal Res., 11, 1354–1379.
    [Google Scholar]
  6. Brommer, M.B., Weltje, G.J. & Trincardi, F. (2009) Reconstruction of sediment supply from mass accumulation rates in the Northern Adriatic Basin (Italy) over the past 19.000 years. J. Geophys. Res. – Earth Surf., doi: DOI: 10.1029/2008JF000987.
    [Google Scholar]
  7. Burban, P.Y., Lick, W. & Lick, J. (1989) The flocculation of fine‐grained sediments in estuarine waters. J. Geophys. Res., 94 (C6), 8323–8330.
    [Google Scholar]
  8. Castellarin, A. & Vai, G.B. (1982) Guida alla Geologia del Sudalpino Centro‐orientale. Soc. Geol. Ital., Guide Geologiche Regionali.
  9. Cattaneo, A., Correggiari, A.M., Langone, L. & Trincardi, F. (2003) The late‐Holocene Gargano subaqueous delta, Adriatic shelf: sediment pathways and supply fluctuations. Mar. Geol., 193, 61–91.
    [Google Scholar]
  10. Cattaneo, A. & Trincardi, F. (1999) The late Quaternary transgressive record in the Adriatic epicontinental sea: basin widening and facies partitioning. In: Isolated Shallow Marine Sand Bodies: Sequence Stratigraphic Analysis and Sedimentologic Interpretation (Ed. by K.M.Bergman & J.W.Snedden , Spec. Publ. SEPM , 64, 127–146.
    [Google Scholar]
  11. Chen, Z., Song, B., Wang, Z. & Cai, Y. (2000) Late Quaternary evolution of the sub‐aqueous Yangtze Delta, China: sedimentation, stratigraphy, palynology, and deformation. Mar. Geol., 162, 423–441.
    [Google Scholar]
  12. Correggiari, A.M., Trincardi, F., Langone, L. & Roveri, M. (2001) Styles and failures in the late Holocene highstand prodelta wedges on the Adriatic shelf. J. Sediment. Res., 71, 218–236.
    [Google Scholar]
  13. Curran, K.J., Hill, P.S., Schell, T.M., Milligan, T.G. & Piper, D.J.W. (2004) Inferring the mass fraction of floc‐deposited mud: application to fine-grained turbidites. Sedimentology, 51, 927–944.
    [Google Scholar]
  14. Davis, J.C. (2002) Statistics and Data Analysis in Geology, 3 edn. Wiley & Sons, New York.
    [Google Scholar]
  15. Diaz, J.I., Palanques, A., Nelson, C.H. & Guillén, J. (1996) Morpho‐structure and sedimentology of the Holocene Ebro prodelta mud belt (northwestern Mediterranean Sea). Continental Shelf Res., 16, 435–456.
    [Google Scholar]
  16. Dinelli, E. & Lucchini, F. (1999) Sediment supply to the Adriatic sea basin from the Italian rivers: geochemical features and environmental constraints. Giornale Geol., 61, 121–132.
    [Google Scholar]
  17. Eisma, D., Dyer, K.R. & Van Leussen, W. (1997) The in‐situ determination of the settling velocities of suspended fine‐grained sediment – a review. In: Cohesive Sediments – Proceedings of the INTERCOH Conference (Ed. by N.Burt , R.Parker & J.Watts ), pp. 17–44. John Wiley & Son, Chichester.
    [Google Scholar]
  18. Eisma, D., Schuhmacher, T., Boekel, H., Van Heerwaarden, J., Franken, H., Lann, M., Vaars, A., Eijgenraam, F. & Kalf, J. (1990) A camera and image analysis system for in‐situ observation of flocs in natural waters. Netherlands J. Sea Res., 27, 43–56.
    [Google Scholar]
  19. Fain, A.M.V., Ogston, A.S. & Sternberg, R.W. (2007) Sediment transport event analysis on the western Adriatic continental shelf. Continental Shelf Res., 27, 431–451.
    [Google Scholar]
  20. Frignani, M., Langone, L., Ravaioli, M., Sorgente, D., Alvisi, F. & Albertazzi, S. (2005) Fine‐sediment mass balance in the western Adriatic continental shelf over a century time scale. Mar. Geol., 222–223, 113–133.
    [Google Scholar]
  21. Garzanti, E., Andò, S. & Vezzoli, G. (2009) Grain‐size dependence of sediment composition and environmental bias in provenance studies. Earth Planet. Sci. Lett., 277, 422–432.
    [Google Scholar]
  22. Gibbs, R.J., Matthews, M.D. & Link, D. (1971) The relationship between sphere size and settling velocity. J. Sediment. Petrol., 41, 7–18.
    [Google Scholar]
  23. Goodbred, S.L.Jr & Kuehl, S.A. (1999) Holocene and modern sediment budgets for the Ganges‐Brahmaputra river system: evidence for highstand dispersal to flood-plain, shelf, and deep-sea depocenters. Geology, 27, 559–562.
    [Google Scholar]
  24. Harris, C.K., Sherwood, C.R. & Signell, R.P. (2004) Sediment dispersal mechanisms within the Adriatic Sea: insights from the EuroStrataform program. EOS, Ocean Sci. Meeting Suppl., 84 (52), Abstract OS52E—07.
    [Google Scholar]
  25. Hill, P.S., Milligan, T.G. & Geyer, W.R. (2000) Controls on effective settling velocity of suspended sediment in the Eel River flood plume. Continental Shelf Res., 20, 2095–2111.
    [Google Scholar]
  26. Hunt, J.R. (1986) Particle aggregate breakup by fluid shear. In: Estuarine Cohesive Sediment Dynamics (Ed. by A.J.Mehta ), pp. 85–109. Springer, New York.
    [Google Scholar]
  27. Ibbeken, H. & Schleyer, R. (1991) Source and Sediment: A Case Study of Provenance and Mass Balance at an Active Plate Margin (Calabria, Southern Italy). Springer‐Verlag, Berlin.
    [Google Scholar]
  28. Kettner, A.J. & Syvitski, J.P.M. (2008) HydroTrend v. 3.0: a climate-driven hydrological transport model that simulates discharge and sediment load leaving a river system. Comput. Geosci., 34, 1170–1183.
    [Google Scholar]
  29. Kineke, G.C., Sternberg, R.W., Trowbridge, J.H. & Geyer, W.R. (1996) Fluid mud processes on the Amazon continental shelf. Continental Shelf Res., 16, 667–696.
    [Google Scholar]
  30. Konert, M. & Vandenberghe, J. (1997) Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction. Sedimentology, 44, 523–535.
    [Google Scholar]
  31. Kranck, K., Smith, P.C. & Milligan, T.G. (1996a) Grain‐size characteristics of fine‐grained unflocculated sediments I: ‘one-round’ distributions. Sedimentology, 43, 589–596.
    [Google Scholar]
  32. Kranck, K., Smith, P.C. & Milligan, T.G. (1996b) Grain‐size characteristics of fine‐grained unflocculated sediments II: ‘multi-round’ distributions. Sedimentology, 43, 597–606.
    [Google Scholar]
  33. Kuehl, S.A., Carter, L., Gomez, B. & Trustrum, N. (2003) Holistic approach offers potential to quantify mass fluxes across continental margins. EOS, 84 (38), 379–388.
    [Google Scholar]
  34. Kuehl, S.A., Levy, B.M., Moore, W.S. & Allison, M.A. (1997) Subaqueous delta of the Ganges‐Brahmaputra river system. Mar. Geol., 144, 81–96.
    [Google Scholar]
  35. Labaune, C., Jouet, G., Berné, S., Gensous, B., Tesson, M. & Delpeint, A. (2005) Seismic stratigraphy of the deglacial deposits of the Rhône prodelta and of the adjacent shelf. Mar. Geol., 222–223, 299–311.
    [Google Scholar]
  36. Le Roux, J.P. (2002) Application of the Hofmann shape entropy to determine the settling velocity of irregular, semi‐ellipsoidal grains. Sediment. Geol., 149, 237–243.
    [Google Scholar]
  37. Lesueur, P., Tastet, J.P. & Weber, O. (2002) Origin and morphosedimentary evolution of fine‐grained modern continental shelf deposits: the gironde mud fields (Bay of Biscay, France). Sedimentology, 49, 1299–1320.
    [Google Scholar]
  38. Li, G., Wei, H., Yue, S., Cheng, Y. & Han, Y. (1998) Sedimentation in the Yellow River delta, part II: suspended sediment dispersal and deposition on the subaqueous delta. Mar. Geol., 149, 113–131.
    [Google Scholar]
  39. Liquete, C., Canals, M., De Mol, B., De Batist, M. & Trincardi, F. (2008) Quaternary stratal architecture of the Barcelona prodeltaic continental shelf (NW Mediterranean). Mar. Geol., 250, 234–250.
    [Google Scholar]
  40. Liquete, C., Canals, M., Lastras, G., Amblas, D., Urgeles, R., De Mol, B., De Batist, M. & Hughes‐Clarke, J.E. (2007) Long‐term development and current status of the Barcelona continental shelf: a source-to-sink approach. Continental Shelf Res., 27, 1779–1800.
    [Google Scholar]
  41. Liu, H., He, Q., Wang, Z.B., Weltje, G.J. & Zhang, J. (2010) Dynamics and spatial variability of near‐bottom sediment exchange in the Yangtze Estuary, China. Estuarine, Coastal Shelf Sci., 86, 322–330.
    [Google Scholar]
  42. Lobo, F.J., Sánchez, R., González, R., Dias, J.M.A., Hernández‐Molina, F.J., Fernández‐Salas, L.M., Díaz Del Río, V. & Mendes, I. (2004) Contrasting styles of the Holocene highstand sedimentation and sediment dispersal systems in the northern shelf of the Gulf of Cadiz. Continental Shelf Res., 24, 461–482.
    [Google Scholar]
  43. Malanotte‐Rizzoli, P. & Bergamasco, A. (1983) The dynamics of the coastal region of the Northern Adriatic Sea. J. Phys. Oceanogr., 13, 1105–1130.
    [Google Scholar]
  44. Manning, A.J., Bass, S.J. & Dyer, K.R. (2006) Floc properties in the turbidity maximum of a mesotidal estuary during neap and spring tidal conditions. Mar. Geol., 253, 193–211.
    [Google Scholar]
  45. Mccave, I.N. (1984) Erosion, transport and deposition of fine‐grained marine sediments. In: Fine‐Grained Sediments: Deep Water Processes and Facies (Ed. by D.A.V.Stow & D.J.W.Piper , Spec. Publ. Geol. Soc. Lond., 15, 35–69.
    [Google Scholar]
  46. Mccave, I.N. & Hall, I.R. (2006) Size sorting in marine muds: processes, pitfalls, and prospects for paleoflow-speed proxies. Geochem. Geophys. Geosyst., 7, 1–37.
    [Google Scholar]
  47. Mikkelsen, O., Milligan, T.G., Hill, P.S. & Moffatt, P. (2004) INSSECT – an instrumented platform for investigating floc properties close to the bottom boundary layer. Limnol. Oceanogr. Meth., 2, 226–236.
    [Google Scholar]
  48. Mikkelsen, O.A., Hill, P.S. & Milligan, T.G. (2007) Seasonal and spatial variation of floc size, settling velocity and density on the inner Adriatic shelf (Italy). Continental Shelf Res., 27, 417–430.
    [Google Scholar]
  49. Milligan, T.G., Hill, P.S. & Law, B.A. (2007) Flocculation and the loss of sediment from the Po river plume. Continental Shelf Res., 27, 309–321.
    [Google Scholar]
  50. Mulder, T. & Syvitski, J.P.M. (1995) Turbidity currents generated at river mouths during exceptional discharge to the world oceans. J. Geol., 103, 285–298.
    [Google Scholar]
  51. Owen, R.B. (2004) Modern fine‐grained sedimentation – spatial variability and environmental controls on an inner pericontinental shelf, Hong Kong. Mar. Geol., 214, 1–16.
    [Google Scholar]
  52. Palinkas, C.M. & Nittrouer, C.A. (2007) Modern sediment accumulation on the Po shelf, Adriatic Sea. Continental Shelf Res., 27, 489–505.
    [Google Scholar]
  53. Pawlowsky‐Glahn, V. & Olea, R.A. (2004) Geostatistical Analysis of Compositional Data. Studies in Mathematical Geology 7. Oxford University Press, New York.
    [Google Scholar]
  54. Poulain, P. (2001) Adriatic sea surface circulation as derived from drifter data between 1990 and 1999. J.Mar. Syst., 29, 3–32.
    [Google Scholar]
  55. Preti, M. (1999) The holocene transgression and the land‐sea interaction south of the Po Delta. Giornale Geol., 61, 143–159.
    [Google Scholar]
  56. Spagnoli, F., Bartholini, G., Dinelli, E. & Giordano, P. (2008) Geochemistry and particle size of surface sediments of Gulf of Manfredonia (Southern Adriatic Sea). Estuarine, Coastal Shelf Sci., 80, 21–30.
    [Google Scholar]
  57. Sternberg, R.W., Cacchione, D.A., Paulson, B., Kineke, G.C. & Drake, D.E. (1996) Observations of sediment transport on the Amazon subaqueous delta. Continental Shelf Res., 16, 697–715.
    [Google Scholar]
  58. Syvitski, J.P.M. & Kettner, A.J. (2007) On the flux of water and sediment into the northern Adriatic Sea. Continental Shelf Res., 27, 296–308.
    [Google Scholar]
  59. Syvitski, J.P.M. & Milliman, J.D. (2007) Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean. J. Geol., 115, 1–19.
    [Google Scholar]
  60. Syvitski, J.P.M., Morehead, M.D. & Nicholson, M. (1998) HydroTrend: a climate-driven hydrologic-transport model for predicting discharge and sediment load to lakes or oceans. Comput. Geosci., 24, 51–68.
    [Google Scholar]
  61. Tesson, M., Labaune, C. & Gensous, B. (2005) Small rivers contribution to the quaternary evolution of a Mediterranean littoral system: the western gulf of Lion, France. Mar. Geol., 222–223, 313–334.
    [Google Scholar]
  62. Traykovski, P., Wiberg, P.L. & Geyer, W.R. (2007) Observations and modeling of wave‐supported sediment gravity flows on the Po prodelta and comparison to prior observations from the Eel shelf. Continental Shelf Res., 27, 375–399.
    [Google Scholar]
  63. Trincardi, F., Correggiari, A.M. & Roveri, M. (1994) Late quaternary transgressive erosion and deposition in a modern epicontinental shelf: the Adriatic semi-enclosed basin. Geo‐Mar. Lett., 14, 41–51.
    [Google Scholar]
  64. Weltje, G.J. (1997) End‐member modeling of compositional data: numerical-statistical algorithms for solving the explicit mixing problem. Mathemat. Geol., 29, 503–549.
    [Google Scholar]
  65. Weltje, G.J. (2004) A quantitative approach to capturing the compositional variability of modern sands. Sediment. Geol., 171, 59–77.
    [Google Scholar]
  66. Weltje, G.J. & Prins, M.A. (2003) Muddled or mixed? Inferring palaeoclimate from size distributions of deep‐sea clastics. Sediment. Geol., 162, 39–62.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2010.00484.x
Loading
/content/journals/10.1111/j.1365-2117.2010.00484.x
Loading

Data & Media loading...

Supplements

Core locations and grain‐size parameters of mud‐wedge samples Chemical compositions (XRF) of fraction [g kg] Chemical compositions (ICP‐AES) of fraction [g kg] Compositional data analysis. Cluster analysis. Permutation test. Sediment supply model.Please note: Wiley‐Blackwell is not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.

Supporting info item

Supporting info item

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error