1887
Volume 23, Issue 3
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

The syntectonic continental conglomerates of the South‐Central Pyrenees record the late stages of thin‐skinned transport of the South‐Pyrenean Central Units and the onset of exhumation of the Pyrenean Axial Zone (AZ) in the core of the orogen. New magnetostratigraphic data of these syntectonic continental conglomerates have established their age as Late Lutetian to Late Oligocene. The data reveal that these materials were deposited during intense periods of tectonic activity of the Pyrenean chain and not during the cessation of the deformation as considered previously. The magnetostratigraphic ages have been combined with new detrital apatite fission track (AFT) thermochronology from AZ‐derived granite cobbles within the syntectonic conglomerates. Distribution of the granitic cobbles with different AFT ages and track lengths combined with their depositional ages reveal information on the timing and rate of episodes of exhumation in the orogen. Some AFT ages are considerably older than the AFT ages of the outcropping AZ granitic massifs, indicating erosion from higher crustal levels within the massifs than presently exposed or from completely eroded plutons. Inverse thermal modelling reveals two well‐defined periods of rapid cooling in the hinterland at . 50–40 and . 30–25 Ma, with another poorly defined cooling episode at . 70–60 Ma. The lowest stratigraphic samples experienced postburial annealing caused by the deposition of younger syntectonic sediments during progressive burial of the south Pyrenean thrust and fold belt. Moreover, samples from the deeper stratigraphic levels also reveal postorogenic cooling during the Late Miocene as a response to the excavation of the Ebro River towards the Mediterranean Sea. Our data strongly support previous ideas about the burial of the South Pyrenean fold and thrust belt by Late Palaeogene syntectonic conglomerates and their subsequent re‐excavation and are consistent with other thermochronological data and thermal modelling from the interior part of the orogen.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2010.00492.x
2010-11-16
2024-04-20
Loading full text...

Full text loading...

References

  1. Antunes, M.T., Casanovas, M.L., Cuesta, M.A., Checa, L., Santafé, J.V. & Agustí, J. (1997) Eocene mammals from the Iberian Peninsula. In: BiochroM'97 (Ed. by J.P.Aguilar , S.Legendre & J.Michaux ), Mem. Trav. E.P.H.E. Inst. Montpellier21, 337–352.
    [Google Scholar]
  2. Baldwin, S.L., Harrison, T.M. & Burke, K. (1986) Fission track evidence for the source of Scotland District sediments, Barbados and implications for post‐Eocene tectonics of the southern Caribbean. Tectonics, 5 (3), 457–468.
    [Google Scholar]
  3. Barsó, D. (2007) Análisis de la procedencia de los conglomerados sinorogénicos de La Pobla de Segur (Lérida) y su relación con la evolución tectónica de los Pirineos centro‐meridionales durante el Eoceno medio‐Oligoceno. PhD Thesis, University of Barcelona. 209pp.
  4. Barsó, D. & Ramos, E. (2007) Procedencia de los conglomerados sinorogénicos de La Pobla de Segur, Pirineos centro‐meridionales. Geogaceta, 41, 19–22.
    [Google Scholar]
  5. Beamud, E., Garcés, M., Cabrera, L., Muñoz, J.A. & Almar, Y. (2003) A new middle to late Eocene continental chronostratigraphy from NE Spain. Earth Planet. Sci. Lett., 216, 501–514.
    [Google Scholar]
  6. Beaumont, C., Muñoz, J.A., Hamilton, J. & Fullsack, P. (2000) Factors controlling the Alpine evolution of the central Pyrenees inferred from a comparison of observations and geodynamical models. J. Geophys. Res., 105 (B4), 8121–8145.
    [Google Scholar]
  7. Bentham, P. (1992) The tectono‐stratigraphic development of the western oblique ramp of the South‐Central Pyrenean thrust system, Northern Spain, PhD Thesis, University of Southern California, 253pp.
  8. Bentham, P. & Burbank, D.W. (1996) Chronology of Eocene foreland basin evolution along the western oblique margin of the South‐Central Pyrenees. In: Tertiary Basins of Spain. The Stratigraphic Record of Crustal Kinematics. World and Regional Geology, Vol. 6 (Ed. by P.F.Friend & C.J.Dabrio ), pp. 144–152. Cambridge University Press, Cambridge.
    [Google Scholar]
  9. Bernet, M., Brandon, M.T., Garver, J.I. & Molitor, B. (2004) Downstream changes of Alpine zircon fission‐track ages in the Rhone and Rhine Rivers. J. Sediment. Res., 74 (1), 82–94.
    [Google Scholar]
  10. Bernet, M. & Spiegel, C. (2004) Introduction: detrital thermochronology. In: Detrital Thermochronology – Provenance Analysis, Exhumation, and Landscape Evolution of Mountain Belts (Ed. by M.Bernet & C.Spiegel ), pp. 1–6. Geological Society of America Special Paper, Boulder, CO.
    [Google Scholar]
  11. Brandon, M.T. (1992) Decomposition of fission‐track grain‐age distributions. Am. J. Sci., 292, 535–564.
    [Google Scholar]
  12. Brandon, M.T., Roden‐Tice, M.K. & Garver, J.I. (1998) Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, northwest Washington State. Geol. Soc. Am. Bull., 110 (8), 985–1009.
    [Google Scholar]
  13. Brandon, M.T. & Vance, J.A. (1992) Tectonic evolution of the Cenozoic Olympic subduction complex, Washington State, as deduced from fission track ages for detrital zircons. Am. J. Sci., 292, 565–636.
    [Google Scholar]
  14. Brügel, A., Dunkl, I., Frisch, W., Kuhlemann, J. & Balogh, K. (2003) Geochemistry and geochronology of gneiss pebbles from foreland molasse conglomerates: Geodynamic and paleogeographic implications for the Oligo-Miocene evolution of the Eastern Alps. J. Geol., 111 (5), 543–563.
    [Google Scholar]
  15. Burbank, D.W., Puigdefabregas, C. & Muñoz, J.A. (1992) The chronology of the Eocene tectonic and stratigraphic development of the eastern Pyrenean foreland basin, Northeast Spain. Geol. Soc. Am. Bull., 104 (9), 1101–1120.
    [Google Scholar]
  16. Carlson, W.D., Donelick, R.A. & Ketcham, R.A. (1999) Variability of apatite fission‐track annealing kinetics: I. Experimental results. Am. Mineral., 84, 1213–1223.
    [Google Scholar]
  17. Casanovas, M.L. (1975) Estratigrafía y Paleontología del yacimiento ludiense de Roc de Santa (Area del Noguera Pallaresa). Paleontol. Evol., 10, 1–158.
    [Google Scholar]
  18. Choukroune, P. (1976) Structure et évolution tectonique de la zone Nord‐Pyrénéenne. Analyse de la déformation dans une portion de chaîne à schistosité subverticale. Mémoir. Soc. Géol. France, 127, 1–116.
    [Google Scholar]
  19. Colombo, F. (1994) Normal and reversed unroofing sequences in syntectonic conglomerates as evidence of progressive basinward deformation. Geology, 22 (3), 235–238.
    [Google Scholar]
  20. Coney, P.J., Muñoz, J., McClay, K.R. & Evenchick, C.A. (1996) Syntectonic burial and post‐tectonic exhumation of the southern Pyrenees foreland fold‐thrust belt. J. Geol. Soc. Lond., 153 (1), 9–16.
    [Google Scholar]
  21. Costa, E., Garcés, M., López‐Blanco, M., Beamud, E., Gómez‐Paccard, M. & Larrasoaña, J.C. (in press) Closing and continentalization of the South Pyrenean foreland basin (NE Spain): magnetochronological constraints. Basin Res.. doi: DOI: 10.1111/j.1365-2117.2009.00452.x.
    [Google Scholar]
  22. Crowley, K.D., Cameron, M. & Schaefer, R.L. (1991) Experimental studies of annealing of etched fission tracks in fluorapatite. Geochim. Cosmochim. Acta, 55, 1449–1465.
    [Google Scholar]
  23. Cuevas Gozalo, M. (1990) Sedimentary facies and sequential architecture of tide‐influenced alluvial deposits. An example from the middle Eocene Capella Formation. South‐Central Pyrenees, Spain, Geol. Ultraiectina61, 152pp.
  24. Donelick, R.A., Ketcham, R.A. & Carlson, W.D. (1999) Variability of apatite fission track annealing kinetics II: crystallographic orientation effects. Am. Mineral., 84, 1224–1234.
    [Google Scholar]
  25. Dunkl, I., Graseman, B. & Frisch, W. (1998) Thermal effects of exhumation of a metamorphic core complex on hanging wall syn‐rift sediments: an example from the Rechnitz window, eastern Alps. Tectonophysics, 297 (1–4), 31–50.
    [Google Scholar]
  26. Ehlers, T.A., Armstrong, P.A. & Chapman, D.S. (2001) Normal fault thermal regimes and the interpretation of low‐temperature thermochronometers. Phys. Earth Planet. Interiors, 126 (3–4), 179–194.
    [Google Scholar]
  27. Ehlers, T.A. & Chapman, D.S. (1999) Normal fault thermal regimes: conducive and hydrothermal heat transfer surrounding the Wasatch fault, Utah. Tectonophysics, 312, 217–234.
    [Google Scholar]
  28. Fischer, M.W. (1984) Thrust tectonics in the North Pyrenees. J. Struct. Geol., 6 (6), 721–726.
    [Google Scholar]
  29. Fitzgerald, P.G., Metcalf, J.R., Baldwin, S.L. & Muñoz, J.A. (2010) Exhumation of the Neouvielle massif in the hanging wall of the Garvarnie thrust, west‐central Pyrenees: thermochronologic constraints and comparisons with footwall exhumation. Abstract, 12th International Conference on Thermochronology, 16–20 August 2010, Glasgow, Scotland.
  30. Fitzgerald, P.G., Munoz, J.A., Coney, P.J. & Baldwin, S.L. (1999) Asymmetric exhumation across the Pyrenean Orogen; implications for the tectonic evolution of a collisional orogen. Earth Planet. Sci. Lett., 173 (3), 157–170.
    [Google Scholar]
  31. Fitzgerald, P.G., Sorkhabi, R.B., Redfield, T.F. & Stump, E. (1995) Uplift and denudation of the central Alaska Range: a case study in the use of apatite fission-track thermochronology to determine absolute uplift parameters. J. Geophys. Res., 100, 20175–20191.
    [Google Scholar]
  32. Foster, G.L. & Carter, A. (2007) Insights into the patterns and locations of erosion in the Himalaya – a combined fission‐track and in situ Sm–Nd Isotopic Study of Detrital Apatite. Earth Planet. Sci. Lett., 257, 407–418.
    [Google Scholar]
  33. Galbraith, R.F. (1981) On statistical models for fission‐track counts. J. Int. Assoc. Math. Geol., 13 (6), 471–478.
    [Google Scholar]
  34. Galbraith, R.F. (2005) Statistics for Fission Track Analysis, Interdisciplinary Statistics Series. Chapman & Hall/CRC, Boca Raton, FL, 219pp.
    [Google Scholar]
  35. Galbraith, R.F. & Green, P.F. (1990) Estimating the component ages in a finite mixture. Nucl. Tracks Radiat. Measure., 17, 197–206.
    [Google Scholar]
  36. Gallagher, K., Brown, R.W. & Johnson, C. (1998) Fission track analysis and its application to geological problems. Ann. Rev. Earth Planet. Sci. Lett., 26, 519–572.
    [Google Scholar]
  37. García‐Castellanos, D., Vergés, J., Gaspar‐Escribano, J. & Cloetingh, S. (2003) Interplay beteween tectonics, climate and fluvial transport during the Cenozoic evolution of the Ebro Basin (NE Iberia). J. Geophys. Res., 108, B7, doi:DOI: 10.1029/2002JB002073.
    [Google Scholar]
  38. García‐Senz, J. (2002) Cuencas extensivas del Cretacico Inferior en los Pirineos Centrales, formación y subsecuente inversión. PhD thesis, University of Barcelona, 310pp.
  39. Garrido‐Megías, A. & Ríos Aragues, L.M.A. (1972) Sintesis geologica del Secundario y Terciario entre los rios Cinca y Segre (Pirineo Central de la vertiente sur pirenaica, provincias de Huesca y Lerida). Summary of Mesozoic and Tertiary geology between the Cinca and Segre Rivers, southern slope of the Central Pyrenees, Huesca and Lerida provinces. Bol. Geol. Minero, 83 (1), 1–47.
    [Google Scholar]
  40. Garver, J.I., Brandon, M.T., Roden, M.M.K. & Kamp, P.J.J. (1999) Exhumation history of orogenic highlands determined by detrital fission track thermochronology. In: Exhumation Processes, Normal Faulting, Ductile Flow and Erosion (Ed. by U.Ring , M.T.Brandon , G.S.Lister & S.D.Willet ), pp. 283–304. Geological Society Special Publications, London, UK.
    [Google Scholar]
  41. Gibson, M., Sinclair, H.D., Lynn, G.J. & Stuart, F.M. (2007) Late‐ to post‐orogenic exhumation of the Central Pyrenees revealed through combined thermochronological data and modelling. Basin Res., 19 (3), 323–334.
    [Google Scholar]
  42. Gleadow, A.J.W. (1990) Fission track thermochronology – reconstructing the thermal and tectonic evolution of the crust. In: Pacific Rim Congress (pp. 15–21. Gold Coast, Queensland.
    [Google Scholar]
  43. Gleadow, A.J.W. & Fitzgerald, P.G. (1987) Uplift history and structure of the Transantarctic Mountains: new evidence from fission track dating of basement apatites in the Dry Valleys area, southern Victoria Land. Earth Planet. Sci. Lett., 82, 1–14.
    [Google Scholar]
  44. Gradstein, F.M., Ogg, J. & Smith, A. (2004) A Geologic Time Scale 2004. Cambridge University Press, Cambridge.
    [Google Scholar]
  45. Grasemann, B. & Mancktelow, N.S. (1993) Two‐dimensional thermal modelling of normal faulting: the simplon fault zone, Central Alps, Switerland. Tectonophysics, 225, 155–165.
    [Google Scholar]
  46. Green, P.F. (1981) A new look at statistics in fission‐track dating. Nucl. Tracks Radiat. Measure., 5 (1–2), 77–86.
    [Google Scholar]
  47. Green, P.F. (1985) Comparison of zeta‐calibration base‐lines for Fission‐Track dating of apatite, zircon and sphene. Chem. Geol., 58 (1–2), 1–22.
    [Google Scholar]
  48. Hurford, A.J. (1991) Uplift and cooling pathways derived from fission track analysis and mica dating: a review. Geol. Rundschau, 80 (1), 349–368.
    [Google Scholar]
  49. Hurford, A.J. & Green, P.F. (1983) The zeta‐age calibration of fission‐track dating. Isotope Geosci., 1 (4), 285–317.
    [Google Scholar]
  50. Huyghe, D., Mouthereau, F., Castelltort, S., Filleaudeau, P.Y. & Emmanuel, L. (2009) Paleogene propagation of the southern Pyrenean thrust wedge revealed by finite strain analysis in frontal thrust sheets: implications for mountain building. Earth Planet. Sci. Lett., 288, 421–433.
    [Google Scholar]
  51. Jolivet, M., Labaume, P., Monie, P., Brunel, M., Arnaud, N. & Campani, M. (2007) Thermochronology constraints for the propagation sequence of the south Pyrenean basement thrust system (France‐Spain). Tectonics, 26(5) TC 5007‐1‐17.
    [Google Scholar]
  52. Jones, M.A., Heller, P.L., Roca, E., Garcés, M. & Cabrera, L. (2004) Time lag of syntectonic sedimentation across an alluvial basin, theory and examples from the Ebro Basin, Spain. Basin Res., 16 (4), 489–506.
    [Google Scholar]
  53. Ketcham, R.A. (2005) Forward and reverse modeling of low‐temperature thermochronology data. In: Low‐Temperature Thermochronology: Techniques, Interpretations and Applications (Ed. by P.W.Reiners & T.A.Ehlers ), Rev. Mineral. Geochem . 58 (1), 275–314.
    [Google Scholar]
  54. Ketcham, R.A., Carter, A., Donelick, R.A., Barbarand, J. & Hurford, A.J. (2007) Improved measurement of fission‐track annealing in apatite using c‐axis projection. Am. Mineral., 92 (5–6), 789–798.
    [Google Scholar]
  55. Ketcham, R.A., Donelick, R.A. & Carlson, W.D. (1999) Variability of apatite fission track annealing kinetics iii: extrapolation to geological time scales. Am. Mineral., 84, 1235–1255.
    [Google Scholar]
  56. Ketcham, R.A., Donelick, R.A. & Donelick, M.B. (2000) Aftsolve: a program for multi-kinetic modeling of apatite fission-track data. Geol. Mater. Res., 2, 1–32.
    [Google Scholar]
  57. Koops, M. & van Rossem, S. (1985) Cajigar and cornudella formations. In: Guide to the sedimentology of the Tremp‐Graus Basin, Vol. 33 (Ed. by M.E.Donselaar & C.R.Geel ), pp. 111–121. State University of Utrecht, Utrecht.
    [Google Scholar]
  58. Laslett, G.M. & Galbraith, R.F. (1996) Statistical modeling of thermal annealing of fission tracks in apatite. Geochim. Cosmochim. Acta, 60, 5117–5131.
    [Google Scholar]
  59. Laslett, G.M., Gleadow, A.J.W. & Duddy, I.R. (1984) The relationship between fission‐track length and track density in apatite. Nucl. Tracks Radiat. Measure., 9 (1), 29–38.
    [Google Scholar]
  60. Laslett, G.M., Green, P.F., Duddy, I.R. & Gleadow, A.J.W. (1987) Thermal modelling of fission tracks in apatite: 2. A quantitative analysis. Chem. Geol., 65, 1–13.
    [Google Scholar]
  61. Lock, J. & Willett, S. (2008) Low‐temperature thermochronometric ages in fold‐and‐thrust belts. Tectonophysics, 456 (3–4), 147–162.
    [Google Scholar]
  62. López‐Martínez, N. (1998) Los yacimientos de mamíferos del Eoceno de La Pobla de Segur. In: Geología y Paleontología del Eoceno de La Pobla de Segur (Lleida) (Ed. by N.López‐Martínez , J.Civis , M.L.Casanovas & R.Daams ) Universitat de Lleida, Lleida, 267pp.
    [Google Scholar]
  63. McClay, K., Muñoz, J.A. & Garcia‐Senz, J. (2004) Extensional salt tectonics in a contractional orogen; a newly identified tectonic event in the Spanish Pyrenees. Geology, 32 (9), 737–740.
    [Google Scholar]
  64. McDougall, I. & Harrison, T.M. (1999) Geochronology and thermochronology by the 40Ar/39Ar method. Oxford Monographs on Geology and Geophysics. Oxford University Press, New York, 269pp.
    [Google Scholar]
  65. McFadden, P.L. & McElhinny, M.W. (1990) Classification of the reversal test in paleomagnetism. Geophys. J. Int., 103, 725–729.
    [Google Scholar]
  66. Meigs, A.J. & Burbank, D.W. (1997) Growth of the Pyrenean orogenic wedge. Tectonics, 16 (2), 239–258.
    [Google Scholar]
  67. Mellere, D. (1992) I conglomerati di Pobla de Segur: Stratigrafia fisica e relazioni tettonica‐sedimentazione. Tesi di Dottorato in Scienze della Terra, Universita degli Studi di Padova, 203pp.
  68. Mellere, D. (1993) Thrust‐generated back‐fill stacking of alluvial fan sequences, South Central Pyrenees, Spain (La Pobla de Segur Conglomerates). In: Tectonic Controls and Signatures in Sedimentary Successions (Ed. by L.Frostick & R.J.Steel ), Spec. Publ. Int. Assoc. Sediment . 20, 67–88.
    [Google Scholar]
  69. Metcalf, J.R., Fitzgerald, P.G., Baldwin, S.L. & Muñoz, J.A. (2009) Thermochronology of a convergent orogen: constraints on the timing of thrust faulting and subsequent exhumation of the Maladeta Pluton in the Central Pyrenean Axial Zone. Earth Planet. Sci. Lett., 287 (3–4), 488–503.
    [Google Scholar]
  70. Metcalf, J.R., Fitzgerald, P.G., Baldwin, S.L., Muñoz, J.A. & Perry, S.E. (2010) Along‐strike variation in the exhumation of the Pyrenean orogen; insights from the Orri thrust sheet in the footwall of the Gavarnie thrust, south‐central Pyrenees. Abstract, 12th International Conference on Thermochronology, 16th–20th August 2010, Glasgow, Scotland
  71. Mey, P.H.W., Nagtegaal, P.J.C., Roberti, K.J. & Hartevelt, J.J.A. (1968) Lithostratigraphic subdivisions of post‐Hercynian deposits in the south Central Pyrenees, Spain. Leidse Geol. Meded., 41, 221–228.
    [Google Scholar]
  72. Morris, R., Sinclair, H., Yelland, A., Hovius, N. & Leeder, M. (1998) Exhumation of the Pyrenean orogen; implications for sediment discharge. Basin Res., 10 (1), 69–85.
    [Google Scholar]
  73. Muñoz, J.A. (1992) Evolution of a continental collision belt; ECORS‐Pyrenees crustal balanced cross‐section. In: Thrust Tectonics (Ed. by K.McClay ), pp. 235–246. Chapman & Hall, London.
    [Google Scholar]
  74. Muñoz, J.A. (2002) The Pyrenees alpine tectonics; I, the alpine system north of the Betic Cordillera. In: The Geology of Spain (Ed. by W.Gibbons & T.Moreno ), p. 649. The Geological Society, London.
    [Google Scholar]
  75. Muñoz, J.A., Coney, P.J., McClay, K.R. & Evenchick, C.A. (1997) Syntectonic burial and post‐tectonic exhumation of the southern Pyrenees foreland fold‐thrust belt; discussion and reply. J. Geol. Soc. Lond., 154, 361–365.
    [Google Scholar]
  76. Naeser, C.W., Bryant, B., Crittenden, M.D. & Sorensen, M.L. (1983) Fission‐track ages of apatite inthe Wasatch Mountains, Utah: an uplift study. Geol. Soc. Am. Mem., 157, 29–36.
    [Google Scholar]
  77. O'Sullivan, P.B. & Parrish, R.R. (1995) The importance of apatite composition and single‐grain ages when interpreting fission track data from plutonic rocks: a case study from the Coast Ranges, British Columbia. Earth Planet. Sci. Lett., 132, 213–224.
    [Google Scholar]
  78. Pérez‐Rivarés, F.J., Garcés, M., Arenas, C. & Pardo, G. (2004) Magnetostratigraphy of the Miocene continental deposits of the Montes de Castejón (central Ebro basin, Spain): geochronological and paleoenvironmental implications. Geol. Acta, 2 (3), 221–234.
    [Google Scholar]
  79. Picart, J., Carrera, N., Solé, J., Montaner, J., Rivas, G., Muñoz, J.A., Serra, L., Beamud, E., Arbués, P., Mencos, J. & Perea, H. (2009) Tremp 252‐1‐2 (65‐22) [document cartogràfic]. 1:25000. Sèrie Mapa Geològic de Catalunya 1:25000, Geotreball 1. Institut Cartogràfic de Catalunya (ICC) Servei Geològic de Catalunya (IGC), Barcelona.
    [Google Scholar]
  80. Rahl, J.M., Ehlers, T.A. & van der Pluijm, B.A. (2007) Quantifying transient erosion of orogens with detrital thermochronology from syntectonic basin deposits. Earth Planet. Sci. Lett., 256, 147–161.
    [Google Scholar]
  81. Reynolds, A. (1987) Tectonically controlled fluvial sedimentation in the South‐Pyrenean Foreland Basin. PhD Thesis, University of Liverpool, Liverpool, 309pp
  82. Riba, O., Reguant, S. & Villena, J. (1983) Ensayo de síntesis estratigráfica y evolutiva de la cuenca terciaria del Ebro. In: Geología de España. Libro Jubilar J.M. Ríos, Vol. II (Ed. by IGME ), pp. 131–159. Instituto Geológico y Minero de España, Madrid.
    [Google Scholar]
  83. Robles, S. (1982) Estudio comparativo del sistema aluvial del borde suroccidental de los Catalánides en la transversal de Prat de Comte (Tarragona) y los abanicos aluviales de Pobla de Segur (PrePirineo de Lérida). Acta Geol. Hispán., 17 (4), 255–269.
    [Google Scholar]
  84. Roest, W.R. & Srivastava, S.P. (1991) Kinematics of the plate boundaries between Eurasia, Iberia, and Africa in the North Atlantic from the Late Cretaceous to the present. Geology, 19 (6), 613–616.
    [Google Scholar]
  85. Rosell, J. & Riba, O. (1966) Nota sobre la disposición sedimentaria de los conglomerados de La Pobla de Segur (provincia de Lérida). Quinto Congreso Internacional de Estudios Pirenaicos, Jaca (Pamplona), 3–16, Instituto de Estudios Pirenaicos CSIC
  86. Rosenbaum, G., Lister, G.S. & Duboz, C. (2002) Relative motions of Africa, Iberia and Europe during Alpine Orogeny. Tectonophysics, 359 (1–2), 117–129.
    [Google Scholar]
  87. Sheldon, N. (2009) Nonmarine records of climatic change across the Eocene Oligocene transition. In: The Late Eocene Earth—Hothouse, Icehouse, and Impacts (Ed. by C.Koeberl & A.Montanari ), Geol. Soc. Am. Spec. Pap . 452, 241–248.
    [Google Scholar]
  88. Sinclair, H.D., Gibson, M., Naylor, M. & Morris, R.G. (2005) Asymmetric growth of the Pyrenees revealed through measurement and modeling of orogenic fluxes. Am. J. Sci., 305 (5), 369–406.
    [Google Scholar]
  89. Spiegel, C., Siebel, W., Kuhlemann, J. & Frisch, W. (2004) Toward a comprehensive provenance analysis: a multi‐method approach and its implications for the evolution of the central Alps. In: Detrital Thermochronology – Provenance Analysis, Exhumation, and Landscape Evolution of Mountain Belts (Ed. by M.Bernet & C.Spiegel ), Geol. Soc. Am. Spec. Pap . 37–50.
    [Google Scholar]
  90. ter Voorde, M. & Bertotti, G. (1994) Thermal effects of normal faulting during rifted basin formation. 1. A finite difference model. Tectonophysics, 240, 133–144.
    [Google Scholar]
  91. ter Voorde, M., de Bruijne, C., Cloetingh, S. & Andriessen, P. (2004) Thermal consequences of thrust faulting: simultaneous versus successive fault activation and exhumation. Earth Planet. Sci. Lett., 223, 397–415.
    [Google Scholar]
  92. van der Beek, P., Robert, X., Mugnier, J.L., Bernet, M., Huyghe, P. & Labrin, E. (2006) Late miocene – recent exhumation of the central Himalaya and recycling in the Foreland Basin assessed by apatite fission‐track thermochronology of Siwalik Sediments, Nepal. Basin Res., 18, 413–434.
    [Google Scholar]
  93. Vergés, J. & Muñoz, J.A. (1990) Thrust sequence in the southern central Pyrenees. Bull. Soc. Geol. France, 6 (2), 265–271.
    [Google Scholar]
  94. Vincent, S.J. (1993) Fluvial paleovalleys in mountain belts: An example from the south‐central Pyrenees. PhD Thesis, University of Liverpool, Liverpool, 407pp.
  95. Vincent, S.J. (2001) The Sis paleovalley a record of proximal fluvial sedimentation and drainage basin development in response to Pyrenean mountain building. Sedimentology, 48, 1235–1276.
    [Google Scholar]
  96. Wagner, G.A., Miller, D.S. & Jäger, E. (1979) Fission track ages on apatite of Bergell rocks from central Alps and Bergell boulders in Oligocene sediments. Earth Planet. Sci. Lett., 102, 395–412.
    [Google Scholar]
  97. Wagner, G.A. & Reimer, G.M. (1972) Fission track tectonics: the tectonic interpretation of fission track apatite ages. Earth Planet. Sci. Lett., 14, 263–268.
    [Google Scholar]
  98. Willet, S.D., Slingerland, R. & Hovius, N. (2001) Uplift, shortening and steady state topography in active mountain belts. Am. J. Sci., 301, 455–485.
    [Google Scholar]
  99. Yelland, A.J. (1990) Fission track thermotectonics in the Pyrenean Orogen. Nucl. Tracks Radiat. Measure., 17 (3), 293–299.
    [Google Scholar]
  100. Zeyen, H. & Fernandez, M. (1994) Integrated lithospheric modeling combining thermal, gravity, and local isostasy analysis; application to the NE Spanish geotransect. J. Geophys. Res., 99 (B9), 18,089–18,102.
    [Google Scholar]
  101. Zwart, H.J. (1979) The geology of the central Pyrenees. Leidse Geol. Mededelingen, 50, 1–74.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2010.00492.x
Loading
/content/journals/10.1111/j.1365-2117.2010.00492.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error