1887
Volume 23, Issue 3
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

Clay mineral assemblages of the Neogene Himalayan foreland basin are studied to decipher their significance with respect to tectonic and climate processes. Fluvial deposits of the Siwalik Group (west‐central Nepal), and sediment of the Ganga River drainage system were analysed for clay mineralogy. The observed clay mineral assemblages are mainly composed of illite (dominant), chlorite, smectite and kaolinite. Illite and chlorite are chiefly of detrital origin, derived from Himalayan sources. Kaolinite and smectite are authigenic, and mainly developed within pore space and as coating of detrital particles. With increasing burial, diagenetic processes affected the original clay mineral signature. Illitisation of smectite and kaolinite occurred below 2500 and 3500 m depth, respectively. Therefore, illite in the lower parts of the Siwalik Group consists of a mixture of inherited illite and illitised smectite and kaolinite, as suggested by illite crystallinity. Detrital grains that make up the framework of the Siwalik Group sandstones mainly consist of quartz, feldspar and lithic fragments, which are principally of sedimentary and metamorphic origin. Lithoclast content increases over time at the expense of quartz and K‐feldspar in response to uplift and erosion of the Lesser Himalaya Series since about 11–10 Ma. Despite mainly felsic source rocks, dominantly physical erosion processes in the Himalayan belt, and high‐energy fluvial depositional systems, smectite is abundant in the <7 Ma Siwalik Group deposits. Analyses of the Siwalik deposits and comparison with the clay mineralogy of the modern drainage system suggest that smectite preferentially formed in floodplains and intermontane valleys during early diagenesis because of downward percolating fluids rich in cations from weathering and soil development. In general, increasing seasonality and aridity linked to variability of the Asian monsoon from about 8 Ma enhanced clay mineral formation and development of authigenic smectite in paleo‐plains on the southern side of the Himalaya.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2010.00485.x
2011-04-20
2024-04-24
Loading full text...

Full text loading...

References

  1. Agarwal, R.P., Prasad, D.N., Samanta, U., Berry, C.M. & Sharma, J. (1994) Hydrocarbon potential of Siwalik Basin. Himalayan Geology, 15, 301–320.
    [Google Scholar]
  2. Appel, E., Rösler, W. & Corvinus, G. (1991) Magnetostratigraphy of the Mio‐Pliocene Surai Khola Siwaliks in west Nepal. Geophys. J. Int., 105, 191–198.
    [Google Scholar]
  3. Auden, J.B. (1935) Traverses in the Himalaya. Rec. Geol. Surv. India, 69, 123–167.
    [Google Scholar]
  4. Becker, J.A., Bickle, M.J., Galy, A. & Holland, T.J. (2008) Himalayan metamorphic CO2 fluxes: quantitative constraints from hydrothermal springs. Earth Planet. Sci. Lett., 265, 616–629.
    [Google Scholar]
  5. Bjørlykke, K., Aagaard, P., Egeberg, P.K. & Simmons, S.P. (1995) Geochemical constraints from formation water analyses from the North Sea and the Gulf Coast Basins on quartz, feldspar and illite precipitation in reservoir rocks. In: The Geochemistry of Reservoirs (Ed. by J.M.Cubitt & W.A.England ), Geol. Soc. Spec. Publ., 36, 33–50.
    [Google Scholar]
  6. Bouquillon, A, France‐Lanord, C., Michard, A. & Tiercelin, J.J. (1990) Sedimentology and geochemistry of the Bengal Fan sediments: the denudation of Himalaya. In Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 116 (Ed. by J.R.Cochran , D.A.V.Stow & C.Auroux , et al.) pp. 43–58. College Station, TX.
    [Google Scholar]
  7. Brozovic, N. & Burbank, D.W. (2000) Dynamic fluvial systems and gravel progradation in the Himalayan foreland. Geol. Soc. Am. Bull., 112, 394–412.
    [Google Scholar]
  8. Capet, X., Chamley, H., Beck, C. & Holtzappel, T. (1990) Clay mineralogy of ODP sites 671 and 672, Barbados Ridge Accretionary Complex and Atlantic Abyssal Plain: palaeoenvironmental and diagenetic implications. In: Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 110 (Ed. by A.Mascle , J.C.Moore & E.Taulor , et al.) pp. 85–96. Ocean Drilling Program, College Station, TX.
    [Google Scholar]
  9. Chamley, H. (1989) Clay Sedimentology. Springer‐Verlag, New York.
    [Google Scholar]
  10. Chuhan, F.A., Bjørlykke, K. & Lowrey, C.2000The role of provenance in illitization of deeply buried reservoir sandstones from Haltenbanken and North Viking Graben. Mar. Petrol. Geol., 5, 1–17.
    [Google Scholar]
  11. Corvinus, G. & Rimal, L.N. (2001) Biostatigraphy and geology of the Neogene Siwalik Group of the Surai Khola and Rato Khola areas in Nepal. Paleogeogr. Paleoclimatol. Paleoecol., 165, 251–279.
    [Google Scholar]
  12. DeCelles, P.G., Gehrels, G.E., Quade, J., Ojha, T.P., Kapp, P.A. & Upreti, B.N. (1998) Neogene foreland basin deposits, erosional unroofing, and kinematic history of the Himalayan fold‐thrust belt, Nepal. Geol. Soc. Am. Bull., 110, 2–21.
    [Google Scholar]
  13. DeCelles, P.G., Robinson, M.D. & Quade, J. (2001) Stratigraphy, structure, and tectonic evolution of the Himalayan fold‐thrust belt in western Nepal. Tectonics, 20, 487–509.
    [Google Scholar]
  14. Delcaillau, B. (1992) Les Siwaliks du Népal Oriental. CNRS Eds, Paris.
    [Google Scholar]
  15. Derry, L.A. & France‐Lanord, C. (1996) Neogene Himalayan weathering history and river 87Sr/86Sr impact on the marine Sr record. Earth Planet. Sci. Lett., 142, 59–74.
    [Google Scholar]
  16. Dettman, D.R., Matthew, J.K., Quade, J., Ryerson, F.J., Ojha, T.P. & Hamidullah, S. (2001) Seasonal stable isotope evidence for a strong Asian monsoon throughout the past 107 m.y.. Geology, 29, 31–34.
    [Google Scholar]
  17. Dithal, M.R., Bajracharya, S.R., Paudel, L.P. & Kizaki, K. (1995) Landslide hazard studies in the Surai Khola–Bardanda area, Mid Western Nepal. Bull. Dept. Geology, Kathmandu, Nepal, vol. 4, Special Issue, pp. 71–78.
  18. Dunoyer de Segonzac, G. (1970) The transformation of clay minerals during diagenesis and low‐grade metamorphism: a review. Sedimentology, 10, 137–143.
    [Google Scholar]
  19. Evans, M.J., Derry, L.A. & France‐Lanord, C. (2004) Geothermal fluxes of alkalinity in the Narayani river system of central Nepal. Geochem. Geophys. Geosyst., 5 (8), 1–21.
    [Google Scholar]
  20. France‐Lanord, C. & Derry, L.A.1994δ13C of organic carbon in the Bengal Fan: source evolution and transport of C3 and C4 plant carbon to marine sediments. Geochim. Cosmochim. Acta, 58 (21), 4809–4814.
    [Google Scholar]
  21. Fluteau, F., Ramstein, G. & Besse, J. (1999) Simulating the evolution of the Asian and African monsoons during the past 30 Myr using an atmospheric general circulation model. J. Geophys. Res., 104 (11), 995–12018.
    [Google Scholar]
  22. Gajurel, A.P. (1998) Les sédiments lacustres du lac de Kathmandu : une approche géochimique et structurale, Master Thesis, University of Grenoble, 30pp.
  23. Galy, A. (1999) Etude géochimique de l'érosion actuelle de la chaîne himalayenne, PhD Thesis, Nancy–France, 466pp.
  24. Galy, A. & France‐Lanord, C.1999Weathering processes of the in the Ganges‐Brahmaputra basin and the riverine alkalinity budget. Chem. Geol., 159, 31–60.
    [Google Scholar]
  25. Garrels, R.M. & Christ, C.L. (1965) Solutions, Minerals, and Equilibria. Harper & Row, New York.
    [Google Scholar]
  26. Garzione, C.N., DeCelles, P.G., Hodkinson, D.G., Ojha, T.P. & Upreti, B.N. (2003) East‐west extension and Miocene environmental change in the southern Tibetan plateau: Thakkhola graben, Central Nepal. Geol. Soc. Am. Bull., 115, 3–20.
    [Google Scholar]
  27. Gautam, P. & Fujiwara, Y. (2000) Magnetic polarity stratigraphy of Siwalik Group sediments of Karnali River section in western Nepal. Geophys. J. Int., 142, 812–824.
    [Google Scholar]
  28. Gautam, P. & Rösler, W. (1999) Depositional chronology and fabric of Siwalik Group sediments in central Nepal from magnetostratigraphy and magnetic anisotropy. J. Asian Earth Sci., 17, 659–682.
    [Google Scholar]
  29. Grout, H. (1995), Caractérisation physique, minéralogique, chimique et signification de la charge particulaire colloïdale de rivières de la zone tropicale, PhD Thesis, University of Aix‐Marseille, 220pp.
  30. Hillier, S. (1995) Erosion, sedimentation and sedimentary origin of clays. In Origin and Mineralogies of Clays (Ed. by B.Velde ), pp. 162–219. Springer‐Verlag, Berlin.
    [Google Scholar]
  31. Hodges, K.V (2000) Tectonics of the Himalaya and southern Tibet from two perspectives. Geol. Soc. Am. Bull., 112, 324–350.
    [Google Scholar]
  32. Holtzappel, T. (1985) Les minéraux argileux, préparation, analyse diffractométrique et détermination. Soc. Géol. Nord., 12, 1–36.
    [Google Scholar]
  33. Huyghe, P., Galy, A. & Mugnier, J.L. (1998) Microstructures, mineralogy and geochemistry of clay size fraction (<2 μm) of thrust zones of western Nepal Siwaliks (Karnali area). J. Nepal Geol. Soc., 18, 239–248.
    [Google Scholar]
  34. Huyghe, P., Galy, A., Mugnier, J.L. & France‐Lanord, C. (2001) Propagation of the thrust system and erosion in the Lesser Himalaya: geochemical and sedimentological evidences. Geology, 29, 1007–1010.
    [Google Scholar]
  35. Huyghe, P., Mugnier, J.L., Gajurel, A.P. & Delcaillau, B. (2005) Tectonic and climatic control of the changes in sedimentary record of the Karnali River section (Siwaliks of western Nepal). The Island Arc, 14, 311–327.
    [Google Scholar]
  36. Koirala, A., Rimal, L.N., Sikrikar, S.M., Pradhananga, U.B. & Pradhan, P.M. (1998) Engineering and environmental geological map of Pokhara valley, Department of Mines and Geology, Kathmandu‐Kingdom of Nepal.
  37. Kroon, D., Steens, T. & Troelstra, S.R. (1991) Onset of monsoonal related upwelling in the western Arabian Sea as revealed by planktonic foraminifers. In Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 117 (Ed. by W.L.Prell & N.Niitsuma ), pp. 257–263. Ocean Drilling Program, College Station, TX.
    [Google Scholar]
  38. Kübler, B. & Goy‐Eggenberger, D. (2001) La cristallinité de l'illite revisitée: Un bilan des connaissances acquises ces trente dernières années. Clay Minerals, 36, 143–57.
    [Google Scholar]
  39. Kumar, S. & Singh, I.B. (1978) Sedimentology study of the Gomti river sediments, Uttar Pradesh, India. Example of a river in alluvial plain. Senckenbergiana Maritime, 10, 145–211.
    [Google Scholar]
  40. Kutzbach, J.E., Prell, W.L. & Ruddiman, W.F. (1993) Sensitivity of Eurasian climate to surface uplift of Tibetan plateau. J. Geol., 101, 177–190.
    [Google Scholar]
  41. Lanson, B., Beaufort, D., Berger, G., Petit, S. & Lacharpagne, J.C. (1995) Evolution de la structure cristallographique des minéraux argileux dans le réservoir gréseux rotliegende des Pays‐Bas. Bull. Centre Recher. Explorat.-Product. Elf aquitaine, 19, 243–65.
    [Google Scholar]
  42. Miall, A.D. (1985) Architectural‐element analysis: a new method of facies analysis applied to fluvial deposits. Earth Sci. Rev., 22, 261–308.
    [Google Scholar]
  43. Millot, G. (1970) Geology of Clays. Springer, Berlin.
    [Google Scholar]
  44. Mohindra, R., Parkash, B. & Prasad, J. (1992) Historical geomorphology and pedology of the Gandak megafan, Middle Gangetic Plains, India. Earth Surface Processes and Landforms, 17, 643–662.
    [Google Scholar]
  45. Molnar, P. & England, P. (1990) Late Cenozoic uplift of mountain ranges and global climate change: chicken or eggs? Nature, 346, 29–34.
    [Google Scholar]
  46. Mugnier, J.L., Huyghe, P., Leturmy, P. & Jouanne, F. (2004) Episodicity and rates of thrust‐sheet motion in the Himalayas (Western Nepal). In Thrust Tectonic and Hydrocarbon Systems (Ed. by K.R.McClay ), AAPG Mem. 82, 91–114.
    [Google Scholar]
  47. Nakayama, K. & Ulak, P. (1999) Evolution of fluvial style in the Siwalik Group in the foothills of the Nepal Himalaya. Sediment. Geol., 125, 205–224.
    [Google Scholar]
  48. Ojha, T.P., Butler, R.F., DeCelles, P.G. & Quade, J. (2009) Magnetic polarity stratigraphy of the Neogene foreland basin deposits of Nepal. Basin Res., 21, 61–90.
    [Google Scholar]
  49. Prell, W.L. & Kutzbach, J.E. (1992) Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution. Nature, 360, 647–652.
    [Google Scholar]
  50. Quade, J., Cater, J.M.L., Ojha, T.P., Adam, J. & Harrison, T.M. (1995) Late Miocene environmental change I Nepal and the Northern Indian subcontinent: stable isotopic evidence from paleosols. Geol. Soc. Am. Bull., 107, 1381–1389.
    [Google Scholar]
  51. Quade, J., Cerling, T.E., Barry, J., Morgan, M.M., Pilbeam, D.R., Chivas, A.R., Lee‐Thorp, J.A. & Van der Merwe, N.J. (1992) A 16‐Ma record of paleodiet using carbon and oxygen isotopes in fossil teeth from Pakistan. Chem. Geol. (Isot. Geosci. Sect.), 94, 182–192.
    [Google Scholar]
  52. Quade, J., Cerling, T.E. & Bowman, J.R. (1989) Development of the Asian monsoon revealed by marked ecologic shift in the latest Miocene of northern Pakistan. Nature, 342, 117–119.
    [Google Scholar]
  53. Rai, S.M., Guillot, S., Le Fort, P. & Upreti, B.N. (1998) Pressure–temperature evolution in the Kathmandu and Gosaikund regions, Central Nepal. 16, 283–298.
  54. Rao, K.L. (1979) India's Water Wealth. Orient Longman limited, New Delhi.
    [Google Scholar]
  55. Rao, R.A., Agarwal, R.P., Sharma, U.N., Bhalla, M.S. & Nanda, A.C. (1988) Magnetic polarity stratigraphy and vertebrate palaeontology of the Upper Siwalik Subgroup of Jammu Hills, India. J. Geol. Soc. India, 31, 361–385.
    [Google Scholar]
  56. Ravelo, A.C., Andreasen, D.H., Lyle, M., Lyle, A.O. & Wara, W.W. (2004) Regional climate shifts caused by gradual global cooling in the Pliocene epoch. Nature, 429, 263–267.
    [Google Scholar]
  57. Rettalack, G.J. (1991) Miocene Paleosols and Ape Habitats of Pakistan and Kenya. Oxford University Press, Oxford.
    [Google Scholar]
  58. Righi, D. & Meunier, A. (1995) Origin of clays by rock weathering and soil formation. In Origin and Mineralogy of Clays (Ed. by B.Velde ), pp. 43–161. Springer‐Verlag, Berlin.
    [Google Scholar]
  59. Robinson, D.M., DeCelles, P.G., Patchett, P.J. & Garzione, C.N. (2001) The kinematic evolution of the Nepalese Himalaya interpreted from Nd isotopes. Earth Planet. Sci. Lett., 192, 507–521.
    [Google Scholar]
  60. Sanyal, P., Bhattacharya, S.K. & Prasad, M. (2005) Chemical diagenesis of Siwalik sandstone: isotopic and mineralogical proxies from Surai Khola section, Nepal. Sediment. Geol., 180, 57–74.
    [Google Scholar]
  61. Sarin, M.M., Krishnaswami, S., Dilli, K., Omayajulu, B.I.K. & Moore, W.S. (1989) Major ion chemistry of the Ganga‐Brahmaputra river system: weathering processes and fluxes to the Bay of Bengal. Geochim. Cosmochim. Acta, 53, 997–1009.
    [Google Scholar]
  62. Singh, I.B. (2004) Late Quaternary history of the Ganga Plain. J. Geol. Soc. India, 64, 431–454.
    [Google Scholar]
  63. Singh, P. (2009) Major, trace and REE geochemistry of the Ganga River sediments: influence of provenance and sedimentary processes. Chem. Geol., 266, 251–264.
    [Google Scholar]
  64. Singh, S., Parkash, B., Rao, M.S., Arora, M. & Bhosle, B. (2006) Geomorphology, pedology and sedimentology of the Deoha/Ganga‐Ghaghara Interfluve, Upper Gangetic Plains (Himalayan Foreland Basin)–Extensional tectonic implications. Catena, 67, 183–203.
    [Google Scholar]
  65. Sinha, R. & Friend, P.F. (1994) River systems and their sediment flux, Indo‐Gangetic plains, Northern Bihar, India. Sedimentology, 41, 825–845.
    [Google Scholar]
  66. Stern, L.A., Chamberlain, C.P., Reynolds, R.C. & Johnson, G.D. (1997) Oxygen isotope evidence of climate change from pedogenic clay minerals in the Himalayan molasses. Geochim. Cosmochim. Acta, 61 (4), 731–744.
    [Google Scholar]
  67. Suresh, N., Ghosh, S.K., Kumar, R. & Sangode, S.J. (2004) Clay‐mineral distribution patterns in late Neogene fluvial sediments of the Subathu sub‐basin, central sector of Himalayan foreland basin: implications for provenance and climate. Sediment. Geol., 163, 265–278.
    [Google Scholar]
  68. Van der Beek, P.A., Robert, X., Mugnier, J.L., Bernet, M., Huyghe, P. & Labrin, E. (2006) Late Miocene‐Recent denudation of the Central Himalaya and recycling in the foreland basin assessed by detrital apatite fission‐track thermochronology of Siwalik sediments, Nepal. Basin Res., 18, 413–434.
    [Google Scholar]
  69. Wells, N.A. & Dorr, J.A. (1987) Shifting of the Kosi River, northern India. Geology, 15, 204–207.
    [Google Scholar]
  70. Worden, R.H. & Morad, S. (2003) Clay minerals on sandstones: controls on formation, distribution and evolution. Int. Assoc. Sedimentol. Spec. Publ., 34, 3–41.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2010.00485.x
Loading
/content/journals/10.1111/j.1365-2117.2010.00485.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error