1887
Volume 23, Issue 3
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

The location, shape and stacking pattern of deep‐marine clastic sediments on drifting stage passive continental margins are strongly influenced by the slope and basin floor topography. The tectonic control on sediment routes and dispersal patterns, however, is less understood on rift margins, particularly the impact of subaqueous transfer zones or relay ramps. In this study, an area of the Palaeocene marine syn‐rift succession in the Vøring Basin is mapped in detail to unravel the relationship between fault geometries and sedimentary infill patterns. Using root‐mean‐square (RMS) amplitudes and deposit thicknesses interpreted from seismic data, sedimentary elements in the Fenris Graben and the Gjallar Ridge are related to the fault patterns and the overall basin geometry. Older deposits are found to be aligned parallel to the basin axis, with the greatest sediment thicknesses on the hanging walls and adjacent to rotated faults. The main sediment supply is interpreted to be sourced from the Vøring Marginal High and Greenland, presumably containing a significant proportion of coarser grained material and comprising numerous local depocentres. With continued rifting and decreased fault activity, finer grained deposition draped the previous basin infill and smoothed the basin floor topography. Deposits close to the foot of relay ramps along the Gjallar Ridge, however, suggest that the high may have acted as a local sediment source leading to local depocentres. Transfer zones played a significant role in sediment transport during the early rifting phase, and were able to maintain some influence into the late rifting and early drifting stage. Identification of early‐ and late‐stage transfer zones may therefore help in locating coarser grained depocentres and potential hydrocarbon reservoirs.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2010.00494.x
2010-11-22
2024-04-23
Loading full text...

Full text loading...

References

  1. Anderson, J.E., Cartwright, J., Drysdall, S.J. & Vivian, N. (2000) Controls on turbidite sand deposition during gravity‐driven extension of a passive margin: examples from Miocene sediments in block 4, Angola. Mar. Petrol. Geol., 17, 1165–1203.
    [Google Scholar]
  2. Andreassen, K., Ødegaard, C.M. & Rafaelsen, B. (2007) Imprints of former ice streams, imaged and interpreted using industry three‐dimensional seismic data from the south‐western Barents Sea. In: Seismic Geomorphology: Applications to Hydrocarbon Exploration and Production (Ed. by R.J.Davies , H.W.Posamentier , L.J.Wood & J.A.Cartwright ), Geol. Soc., London, Spec. Publ., 277, 151–169.
    [Google Scholar]
  3. Athmer, W., Groenenberg, R.M., Luthi, S.M., Donselaar, M.E., Sokoutis, D. & Willingshofer, E. (2010) Relay ramps as pathways for turbidity currents: a study combining analogue sandbox experiments and numerical flow simulations. Sedimentology, 57, 806–823.
    [Google Scholar]
  4. Blystad, P., Brekke, H., Færseth, R., Larsen, B.T., Skogseid, J. & Tørudbakken, B. (1995) Structural elements of the Norwegian Continental Shelf, part II: the Norwegian Sea region. NPD Bull., 8, 1–45.
    [Google Scholar]
  5. Brekke, H. (2000) The tectonic evolution of the Norwegian Sea Continental Margin with emphasis on the Vøring and Møre Basins. In: Dynamics of the Norwegian Margin (Ed. by A.Nøttvedt , B.T.Larsen , S.Olaussen , B.Tørudbakken , J.Skogseid , R.H.Gabrielsen , H.Brekke & Ø.Birkeland ), Geol. Soc., London, Spec. Publ., 167, 327–378.
    [Google Scholar]
  6. Bruhn, R. & Vagle, K. (2005) Relay ramp evolution and mass flow deposition (Upper Kimmeridgian‐Lower Volgian) in the Tail End Graben, Danish North Sea. Basin Res., 17, 551–567.
    [Google Scholar]
  7. Chen, Q. & Sidney, S. (1997) Seismic attribute technology for reservoir forecasting and monitoring. Lead. Edge, 16, 445–448.
    [Google Scholar]
  8. Cloetingh, S., Beekman, F., Ziegler, P.A., Van Weiss, J.‐D. & Sokoutis, D. (2008) Post‐rift compressional reactivation potential of passive margins and extensional basins. In: The Nature and Origin of Compression in Passive Margins (Ed. by H.Johnson , A.G.Doré , R.W.Gatliff , R.Holdsworth , E.R.Lundin & J.D.Ritchie ), Geol. Soc., London, Spec. Publ., 306, 27–70.
    [Google Scholar]
  9. Corfield, S.M., Wheeler, W., Karpuz, R., Wilson, M. & Helland, R. (2004) Exploration 3D seismic over the Gjallar Ridge, Mid‐Norway: visualization of structures on the Norwegian Volcanic Margin from Moho to seafloor. In: 3D Seismic Technology: Application to the Exploration of Sedimentary Basins (Ed. by R.J.Davies , J.A.Cartwright , S.A.Stewart , M.Lappin & J.R.Underhill ), Geol. Soc., London, Mem. , 29, 177–185.
    [Google Scholar]
  10. Dalland, A., Worsley, D. & Ofstad, K. (1988) A lithostratigraphic scheme for the Mesozoic and Cenozoic succession offshore Mid‐ and northern Norway. NPD Bull., 4, 1–65.
    [Google Scholar]
  11. Dart, C.J., Collier, R.E.L., Gawthorpe, R.L., Keller, J.V.A. & Nichols, G. (1994) Sequence stratigraphy of (?)Pliocene–Quaternary synrift, Gilbert‐Type fan deltas, Northern Peloponnesos, Greece. Mar. Petrol. Geol., 11, 545–560.
    [Google Scholar]
  12. Davies, R.K., Crawford, M., Dula, W.F.J., Cole, M.J. & Dorn, G.A. (1997) Outcrop interpretation of seismic‐scale normal faults in southern Oregon: description of structural styles and evaluation of subsurface interpretation methods. Lead. Edge, 16, 1135–1142.
    [Google Scholar]
  13. Doré, A.G., Lundin, E.R., Fichler, C. & Olesen, O. (1997) Patterns of basement structure and reactivation along the NE Atlantic Margin. J. Geol. Soc., Lond., 154, 85–92.
    [Google Scholar]
  14. Eldholm, O. & Grue, K. (1994) North Atlantic volcanic margins: dimensions and production rates. J. Geophys. Res., 99, 2955–2968.
    [Google Scholar]
  15. Færseth, R.B. & Lien, T. (2002) Cretaceous evolution in the Norwegian Sea – a period characterized by tectonic quiescence. Mar. Petrol. Geol., 19, 1005–1027.
    [Google Scholar]
  16. Fonneland, H.C., Lien, T., Martinsen, O.J., Pedersen, R.B. & Košler, J. (2004) Detrital zircon ages: a key to understanding the deposition of deep marine sandstones in the Norwegian Sea. Sed. Geol., 164, 147–159.
    [Google Scholar]
  17. Fugelli, E.M.G. & Olsen, T.R. (2005) Screening for deep‐marine reservoirs in frontier basins: part 1 – examples from offshore Mid-Norway. AAPG Bull., 89, 853–882.
    [Google Scholar]
  18. Gawthorpe, R.L. & Colella, A. (1990) Tectonic controls on coarse‐grained delta depositional systems in rift basins. In: Coarse‐Grained Deltas (Ed. by A.Colella & D.B.Prior ), Spec. Publ. Int. Ass. Sediment., 10, 113–127.
    [Google Scholar]
  19. Gawthorpe, R.L. & Hurst, J.M. (1993) Transfer zones in extensional basins: their structural style and influence on drainage development and stratigraphy. J. Geol. Soc., Lond., 150, 1137–1152.
    [Google Scholar]
  20. Gernigon, L., Ringenbach, J.‐C., Planke, S. & Le Gall, B. (2004) Deep structures and breakup along volcanic rifted margins: insights from integrated studies along the outer Vøring Basin (Norway). Mar. Petrol. Geol., 21, 363–372.
    [Google Scholar]
  21. Gernigon, L., Ringenbach, J.C., Planke, S., Le Gall, B. & Jonquet‐Kolstø, H. (2003) Extension, crustal structure and magmatism at the outer Vøring Basin, Norwegian Margin. J. Geol. Soc., Lond., 160, 197–208.
    [Google Scholar]
  22. Gómez, M., Vergés, J., Fernàndez, M., Torne, M., Ayala, C., Wheeler, W. & Karpuz, R. (2004) Extensional geometry of the Mid‐Norwegian Margin before Early Tertiary continental breakup. Mar. Petrol. Geol., 21, 177–194.
    [Google Scholar]
  23. Gupta, S., Underhill, J.R., Sharp, I.R. & Gawthorpe, R.L. (1999) Role of fault interactions in controlling synrift sediment dispersal patterns: Miocene, Abu Alaqa Group, Suez Rift, Sinai, Egypt. Basin Res., 11, 167–189.
    [Google Scholar]
  24. Kallweit, R.S. & Wood, L.C. (1982) The limits of resolution of zero‐phase wavelets. Geophysics, 47, 1035–1046.
    [Google Scholar]
  25. Kjennerud, T. & Vergara, L. (2005) Cretaceous to Palaeogene 3D palaeobathymetry and sedimentation in the Vøring Basin, Norwegian Sea. In: Petroleum Geology: North‐West Europe and Global Perspectives – Proceedings of the 6th Petroleum Geology Conference (Ed. by A.G.Doré & B.A.Vining ), pp. 815–831. Geological Society, London.
    [Google Scholar]
  26. Larsen, P.‐H. (1988) Relay structures in a lower Permian basement‐involved extension system, East Greenland. J. Struct. Geol., 10, 3–8.
    [Google Scholar]
  27. Lien, T. (2005) From rifting to drifting: effects on the development of deep-water hydrocarbon reservoirs in a passive margin setting, Norwegian Sea. Norw. J. Geol., 85, 319–332.
    [Google Scholar]
  28. Lundin, E.R. & Doré, A.G. (1997) A tectonic model for the Norwegian passive margin with implications for the NE Atlantic: early Cretaceous to break-up. J. Geol. Soc., Lond., 154, 545–550.
    [Google Scholar]
  29. Lundin, E.R. & Doré, A.G. (2002) Tectono‐stratigraphic geometries at volcanic passive margins – some observed phenomena in the Norwegian Sea and elsewhere on the NE Atlantic Margin. Proceedings AAPG Hedberg Conference “Hydrocarbon Habitat of Volcanic Rifted Passive Margins”. Stavanger, Norway.
  30. Mjelde, R., Kodaira, S., Shimamura, H., Kanazawa, T., Shiobara, H., Berg, E.W. & Riise, O. (1997) Crustal structure of the central part of the Vøring Basin, Mid‐Norway Margin, from ocean bottom seismographs. Tectonophysics, 277, 235–257.
    [Google Scholar]
  31. Mosar, J. (2000) Depth of extensional faulting on the Mid‐Norway Atlantic Passive Margin. Norg. Geol. Unders. Bull., 437, 33–43.
    [Google Scholar]
  32. Mosar, J., Lewis, G. & Torsvik, T.H. (2002) North Atlantic sea‐floor spreading rates: implications for the Tertiary development of inversion structures of the Norwegian–Greenland Sea. J. Geol. Soc., Lond., 159, 503–515.
    [Google Scholar]
  33. Norwegian Petroleum Directorate, Exploration wellbore: 6704/12‐1, the NPD's fact pages. Available at: http://www.npd.no/engelsk/cwi/pbl/en/well/all/3759.htm.
  34. Peacock, D.C.P., Price, S.P., Whitham, A.G. & Pickles, C.S. (2000) The world's biggest relay ramp: hold with Hope, NE Greenland. J. Struct. Geol., 22, 843–850.
    [Google Scholar]
  35. Peacock, D.C.P. & Sanderson, D.J. (1994) Geometry and development of relay ramps in normal fault systems. AAPG Bull., 78, 147–165.
    [Google Scholar]
  36. Raum, T., Mjelde, R., Digranes, P., Shimamura, H., Shiobara, H., Kodaira, S., Haatvedt, G., Sørenes, N. & Thorbjørnsen, S. (2002) Crustal structure of the southern part of the Vøring Basin, Mid‐Norway Margin, from wide‐angle seismic and gravity data. Tectonophysics, 355, 99–126.
    [Google Scholar]
  37. Reemst, P. & Cloetingh, S. (2000) Polyphase rift evolution of the Vøring Margin (Mid‐Norway): constraints from forward tectonostratigraphic modeling. Tectonics, 19, 225–240.
    [Google Scholar]
  38. Ren, S., Faleide, J.I., Eldholm, O., Skogseid, J. & Gradstein, F. (2003) Late Cretaceous–Paleocene tectonic development of the NW Vøring Basin. Mar. Petrol. Geol., 20, 177–206.
    [Google Scholar]
  39. Ren, S., Skogseid, J. & Eldholm, O. (1998) Late Cretaceous–Paleocene extension on the Vøring Volcanic Margin. Mar. Geophys. Res., 20, 343–369.
    [Google Scholar]
  40. Ronghe, S. & Surarat, K. (2002) Acoustic impedance interpretation for sand distribution adjacent to a rift boundary fault, Suphan Buri Basin, Thailand. AAPG Bull., 86, 1753–1771.
    [Google Scholar]
  41. Scholz, C.A. (1995) Deltas of the Lake Malawi Rift, East Africa: seismic expression and exploration implications. AAPG Bull., 79, 1679–1697.
    [Google Scholar]
  42. Skogseid, J. (1994) Dimensions of the Late Cretaceous–Paleocene northeast Atlantic rift derived from Cenozoic subsidence. Tectonophysics, 240, 225–247.
    [Google Scholar]
  43. Skogseid, J., Pedersen, R., Eldholm, O. & Larsen, B.T. (1992) Tectonism and magmatism during the NE Atlantic continental break‐up: the Vøring margin. In: Magmatism and the Causes of Continental Break‐Up (Ed. by B.C.Storey , T.Alabaster & R.J.Pankhurst ), Geol. Soc. Spec. Publ. , 68, 305–320.
    [Google Scholar]
  44. Soreghan, M.J., Scholz, C.A. & Wells, J.T. (1999) Coarse‐grained, deep‐water sedimentation along a border fault margin of Lake Malawi, Africa: seismic stratigraphic analysis. J. Sediment. Res., 69, 832–846.
    [Google Scholar]
  45. Stewart, I.S. & Hancock, P.L. (1991) Scales of structural heterogeneity within neotectonic normal fault zones in the Aegean Region. J. Struct. Geol., 13, 191–204.
    [Google Scholar]
  46. Swiecicki, T., Gibbs, P.B., Farrow, G.E. & Coward, M.P. (1998) A tectonostratigraphic framework for the Mid‐Norway region. Mar. Petrol. Geol., 15, 245–276.
    [Google Scholar]
  47. Trudgill, B.D. (2002) Structural controls on drainage development in the Canyonlands Grabens of southeast Utah. AAPG Bull., 86, 1095–1112.
    [Google Scholar]
  48. Tsikalas, F., Faleide, J.I., Eldholm, O. & Wilson, J. (2005) Late Mesozoic‐Cenozoic structural and stratigraphic correlations between the conjugate Mid‐Norway and NE Greenland continental margins. In: Petroleum Geology: North‐West Europe and Global Perspectives – Proceedings of the 6th Petroleum Geology Conference (Ed. by A.G.Doré & B.A.Vining ), pp. 785–801. Geological Society, London.
    [Google Scholar]
  49. U.S. Geological Survey, Coastal and Marine Geology InfoBank Atlas: Europe regions, Europe. Available at: http://walrus.wr.usgs.gov/infobank/gazette/html/regions/eu.html.
  50. Vergara, L., Wreglesworth, I., Trayfoot, M. & Richardsen, G. (2001) The distribution of Cretaceous and Paleocene deep‐water reservoirs in the Norwegian Sea. Petrol. Geol., 7, 395–408.
    [Google Scholar]
  51. Wangen, M., Fjeldskaar, W., Faleide, J.I., Wilson, J., Zweigel, J. & Austegard, A. (2008) Forward modeling of stretching episodes and paleo heat flow of the Vøring Margin, NE Atlantic. J. Geodyn., 45, 83–98.
    [Google Scholar]
  52. Young, M.J., Gawthorpe, R.L. & Sharp, I.R. (2002) Architecture and evolution of syn‐rift clastic depositional systems towards the tip of a major fault segment, Suez Rift, Egypt. Basin Res., 14, 1–23.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2010.00494.x
Loading
/content/journals/10.1111/j.1365-2117.2010.00494.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error