1887
Volume 23, Issue 5
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

An extensive low‐temperature thermochronology study of the Swiss part of the North Alpine Foreland Basin has been conducted with the aim of deciphering the late Neogene basin development. Apatite fission‐track (AFT) ages from wells located in the distal and weakly deformed Plateau Molasse reveal rapid, km‐scale erosion with an onset in early Pliocene times. The distribution of erosion implies that there was a strong gradient in late Miocene deposition rates along the strike of the basin, with an increase towards the northeast. Additionally, renewed tectonic activity and km‐scale out‐of‐sequence thrusting during Plio‐Pleistocene times is indicated by AFT data from wells within the thrusted, proximal Subalpine Molasse. Several different mechanisms driving late Neogene basin erosion and accelerated erosional discharge from the European Alps have been considered in the literature. Based on our AFT results, we reevaluate previously published hypotheses, and suggest that a change in climate and/or drainage reorganisation coincided and possibly interacted with preexisting tectonic and geodynamic forces in the Alpine region.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2011.00501.x
2011-02-15
2024-03-29
Loading full text...

Full text loading...

References

  1. Atlas of Switzerland 2.0.
    Atlas of Switzerland 2.0. (2004) Swiss Federal Office for Topography, Wabern.
  2. Berger, J.‐P., Reichenbacher, B., Becker, D., Grimm, M., Grimm, K., Picot, L., Storni, A., Pirkenseer, C. & Schaefer, A. (2005) Eocene‐Pliocene time scale and stratigraphy of the Upper Rhine Graben (URG) and the Swiss Molasse Basin (SMB). Int. J. Earth Sci., 94, 711–731.
    [Google Scholar]
  3. Bolliger, T., Engesser, B. & Weidmann, M. (1993) Première découverte de mammifères pliocènes dans le Jura neuchatelois. Eclogae geol. Helv., 86, 1031–1068.
    [Google Scholar]
  4. Braun, J., van der Beek, P. & Batt, G. (2006) Quatitative Thermochronology: Numerical Methods for the Interpretation of Thermochronological Data, 1st ed. Cambridge Univ. Press, New York.
    [Google Scholar]
  5. Burg, J.‐P., Sokoutis, D. & Bonini, M. (2002) Model‐inspired interpretation of seismic structures in the Central Alps: wedging and buckling at mature stage of collision. Geology, 30, 643–646.
    [Google Scholar]
  6. Burkhard, M. (1990) Aspects of the large‐scale Miocene deformation in the most external parts of the Swiss Alps(Subalpine Molasse to Jura fold belt). Eclogae Geol. Helv., 83, 559–583.
    [Google Scholar]
  7. Burkhard, M. & Sommaruga, A. (1998) Evolution of the western Swiss Molasse basin: structural relations with the Alps and the Jura belt. In: Cenozoic Foreland Basins of Western Europe (Ed. by A.Mascle , et al.) Geol. Soc. Lond., London , 134, 279–298.
    [Google Scholar]
  8. Carlson, W.D., Donelick, R.A. & Ketcham, R.A. (1999) Variability of apatite fission‐track annealing kinetics: I. Experimental results. Am. Mineral., 84, 1213–1223.
    [Google Scholar]
  9. Cederbom, C.E., Sinclair, H.D., Schlunegger, F. & Rahn, M. (2004) Climate‐induced rebound and exhumation of the European Alps. Geology, 32, 709–712.
    [Google Scholar]
  10. Champagnac, J.‐D., Molnar, P., Anderson, R.S., Sue, C. & Delacou, B. (2007) Quaternary erosion‐induced isostatic rebound of the western Alps. Geology, 35, 195–198.
    [Google Scholar]
  11. Champagnac, J.‐D., van der Beek, P., Diraison, G. & Dauphin, S. (2009) Flexural isostatic response of the Alps to increased quaternary erosion recorded by foreland basin remnants, SE France. Terra Nova, 20, 213–220.
    [Google Scholar]
  12. Dewey, J.F., Helman, M.L., Turco, E., Hutton, D.H.W. & Knott, S.D. (1989) Kinematics of the western Mediterranean. In: Alpine Tectonics (Ed. by M.P.Coward , D.Dietrich & R.G.Park ), Geol. Soc. Spec. Publ. Lond., 45, 265–283.
    [Google Scholar]
  13. Donelick, R.A., O'Sullivan, P.B. & Ketcham, R.A. (2005) Apatite fission‐track analysis. In: Low‐Temperature Thermochronology: Techniques, Interpretations and Applications (Ed. by P.W.Reiner & T.A.Ehlers ), Rev. Mineral. Geochem., 58, 49–94.
    [Google Scholar]
  14. Driscoll, N.W. & Haug, G.H. (1998) A short circuit in thermohaline circulation: a cause for Northern Hemisphere glaciation? Science, 282, 436–438.
    [Google Scholar]
  15. England, P. & Molnar, P. (1990) Surface uplift, uplift of rocks, and exhumation of rocks. Geology, 18, 1173–1177.
    [Google Scholar]
  16. Fortelius, M., Eronen, E., Liu, L., Pushkina, P., Tesakov, A., Vislobokova, I. & Zhang, Z. (2006) Late Miocene and Pliocene large land mammals and climatic changes in Euroasia. Palaeogeogr. Palaeoclimatol. Palaeoecol., 238, 219–227.
    [Google Scholar]
  17. Galbraith, R.F. (2005) Statistics for Fission Track Analysis. Taylor & Francis Group, Boca Raton.
    [Google Scholar]
  18. Giamboni, M., Ustaszewski, K., Schmid, S.M., Schumacher, M. & Wetzel, A. (2004a) Plio‐Pleistocene reactivation of Paleozoic and Paleogene structures in the Rhine‐Bresse transform zone (northern Switzerland and eastern France). Int. J. Earth Sci., 93, 207–223 Greber, E., Grünenfelder, T., Keller, B. &Wyss, R. (1994) Die Geothermie‐Bohrung Weggis, Kanton Luzern. Bull. schweiz. Ver. Petroleum‐Geol. u. –Ing., 61, 17–43.
    [Google Scholar]
  19. Giamboni, M., Wetzel, A., Nivière, B. & Schumacher, M. (2004b) Plio‐Pleistocene folding in the southern Rhinegraben recorded by the evolution of the drainage network (sundgau area; northwestern switzerland and France). Eclo. Geol. Helv., 97, 17–31.
    [Google Scholar]
  20. Genser, J., Cloetingh, S.A.P.L. & Neubauer, F. (2007) Late orogenic rebound and oblique Alpine convergence: new constraints from subsidence analysis of the Austrian Molasse basin. Glob. Planet. Change, 58, 214–233.
    [Google Scholar]
  21. Greber, E., Grünenfelder, T., Keller, B. & Wyss, R. (1994) Die Geothermie‐Bohrung Weggis, Kanton Luzern. Bull. Schweiz. Ver. Petroleum-Geol. u. –Ing., 61, 17–43.
    [Google Scholar]
  22. Haeuselmann, P., Granger, D.E., Jeannin, P.‐Y. & Lauritzen, S.‐E. (2007) Abrupt glacial valley incision at 0.8 Ma dated from cave deposits in Switzerland. Geology, 35, 143–146.
    [Google Scholar]
  23. Hantke, R. (2006) 1151 Rigi. Swiss Federal Office of Topography, Wabern.
  24. Haug, G.H. & Tiedemann, R. (1998) Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature, 393, 673–676.
    [Google Scholar]
  25. Hodell, D.A, Curtis, J.H., Sierro, F.J. & Raymo, M.E. (2001) Correlation of late Miocene to early Pliocene sequences between Mediterranean and North Atlantic. Paleoceanography, 16, 164–178.
    [Google Scholar]
  26. Kastrup, U., Zoback, M.L., Deichmann, N., Evans, K.F., Giardini, D. & Michael, A.J. (2004) Stress field variations in the Swiss Alps and the northern Alpine foreland derived from inversion of fault plane solutions. J. Geophys. Res., 109, B01402, doi: DOI: 10.1029/2003JB002550.
    [Google Scholar]
  27. Kempf, O., Matter, A., Burbank, D.W. & Mange, M. (1999) Depositional and structural evolution of a foreland basin margin in a magnetostratigraphic framework; the eastern Swiss Molasse Basin. In: Geological Dynamics of Alpine‐Type Mountain Belts; Ancient and Modern (Ed. by M.Engi , A.Matter , O.A.Pfiffner , R.Trümpy & W.H.Berger ), Int. J. Earth Sci., 88, 253–275.
    [Google Scholar]
  28. Ketcham, R.A. (2005) Forward and inverse modeling of low‐temperature thermochronology data. In: Low‐Temperature Thermochronology: Techniques, Interpretations, and Applications (Ed. by P.W.Reiners & T.A.Ehlers ), Rev. Mineral. Geochem., 58, 275–314.
    [Google Scholar]
  29. Kissling, E. (2007) Towards a plate tectonic model of Alpine orogeny, paper presented at 8th Workshop on Alpine Geological Studies, p. 32, Davos, Switzerland, 10–12 October 2007.
  30. Kissling, E., Schmid, S.M., Lippitsch, R., Ansorage, J. & Fügenschuh, B. (2006) Lithosphere structure and tectonic evolution of the Alpine arc: new evidence from high‐resolution teleseismic tomography. In: European Lithosphere Dynamics (Ed. by R.A.Stephenson & D.G.Gee ), Mem. Geol. Soc. London , 32, 129–145.
    [Google Scholar]
  31. Krijgsman, W., Hilgen, F.J., Raffi, I., Sierro, F.J. & Wilson, D.S. (1999) Chronology, causes and progression of the Messinian salinity crisis. Nature, 400, 652–662.
    [Google Scholar]
  32. Kuhlemann, J. (2000) Post‐collisional sediment budget of circum‐Alpine basins (Central Europe). Mem. Sci. Geol. Padova, 52, 1–91.
    [Google Scholar]
  33. Kuhlemann, J. & Kempf, O. (2002) Post‐Eocene evolution of the North Alpine Foreland Basin and its response Alpine tectonics. Sediment. Geol., 152, 45–78.
    [Google Scholar]
  34. Lindow, J., Cederbom, C., Oncken, O., Schlunegger, F. & Gröpler, D. (2009) Neogene tectonics in the Swiss Subalpine Molasse basin: Preliminary results from apatite (U‐Th)/He ages and fault slip analyses in the Rigi area (Switzerland). Geophys. Res. Abstracts, 11, EGU2009‐5893.
  35. Lippitsch, R., Kissling, E. & Ansorage, J. (2003) Upper mantle structure beneath the Alpine orogen from high‐resolution teleseismic tomography. J. Geophys. Res., 108, B8, 2376, doi: DOI: 10.1029/2002JB002016.
    [Google Scholar]
  36. Lyon‐Caen, H. & Molnar, P. (1989) Constraints on the deep structure and dynamic processes beneath the Alps and adjacent regions from an analysis of gravity anomalies. Geophys. J. Int., 89, 19–32.
    [Google Scholar]
  37. Madritsch, H., Fabbri, O., Hagedorn, E.‐M., Preusser, F., Schmid, S. & Zielger, P.A. (2010) Feedback between erosion and active deformation: geomorphic constraints from the frontal Jura fold-and-thrust belt (eastern France). Int J Earth Sci, in press Malusa, M.G., & Vezzoli G. (2006) Interplay between erosion and tectonics in the Western Alps. Terra Nova, 18, 104–108.
    [Google Scholar]
  38. Malusa, M.G. & Vezzoli, G. (2006) Interplay between erosion and tectonics in the Western Alps. Terra Nova, 18, 104–108.
    [Google Scholar]
  39. Mazurek, M., Hurford, A.J. & Leu, W. (2006) Unravelling the multi‐stage burial history of the Swiss Molasse basin: integration of apatite fission track, vitrinte reflectance and biomarker isomerisation analysis. Basin Res., 18, 27–50.
    [Google Scholar]
  40. Medici, F. & Rybach, L. (1995) Geothermal Map of Switzerland. Swiss Geophysical Commission, Geophysique, 30, pp 30.
  41. Molnar, P. (2004) Late Cenozoic increase in accumulation rates of terrestrial sediment: how might climate change have affected erosion rates? Annu. Rev. Earth Planet. Sci., 32, 67–89.
    [Google Scholar]
  42. Mosar, J. (1999) Present‐day and future tectonic underplating in the western Swiss Alps: reconciliation of basement/wrench-faulting and décollement folding of the Jura and Molasse basin in the Alpine foreland. Earth Planet. Sci. Lett., 173, 143–155.
    [Google Scholar]
  43. Mosbrugger, V., Utescher, T. & Dilcher, D.L. (2005) Cenozoic continental climatic evolution of central Europe. Proc. Natl. Acad. Sci., 102, 14964–14969.
    [Google Scholar]
  44. Pfiffner, O.A., Erard, P.‐F. & Stäuble, M. (1997) Two cross‐sections through the Swiss Molasse Basin (lines E4–E6, W1, W7–W10). In: Deep Structure of the Swiss Alps. Results of NRP 20 (Ed. by O.A.Pfiffner , et al.) pp. 64–72. Birkhäuser Verlag, Basel.
    [Google Scholar]
  45. Rahn, M.K. & Selbekk, R. (2007) Absolute dating of the youngest sediments of the Swiss Molasse basin by apatite fission track analysis. Swiss J. Geosci., 100, 371–381.
    [Google Scholar]
  46. Raymo, M.E. (1994) The initiation of Northern Hemisphere glaciation. Annu. Rev. Earth Planet. Sci., 22, 353–383.
    [Google Scholar]
  47. Schärli, U. & Kohl, T. (2002) Archivierung und Kompilation Geotermischer Daten der Schweiz und Angrenzender Gebiete. Swiss Geophys. Com., Geophysik, 36, 134pp.
    [Google Scholar]
  48. Schegg, R. (1994) The coalification profile of the well Weggis (Subalpine Molasse, central Switzerland): implications for erosion estimates and the paleogeothermal regime in the external part of the Alps. Bull. Swiss Assoc. Petrol. Geol. Ing., 61, 57–67.
    [Google Scholar]
  49. Schegg, R. & Leu, W. (1998) Analysis of erosion ebents and paleogeothermal gradients in the North Alpine Foreland Basin of Switzerland. In: Basin Modelling: Practice and Progress (Ed. by D.J.Düppenbecker & J.E.Iliffe ), Geol. Soc. LondonSpec. Publ., 141, 137–155.
    [Google Scholar]
  50. Schlunegger, F., Matter, A., Burbank, D.B. & Klaper, E.M. (1997) Magnetostratigraphic constraints on relationships between evolution of the central Swiss Molasse basin and Alpine orogenic events. GSA Bull., 109, 225–241.
    [Google Scholar]
  51. Schlunegger, F., Matter, A. & Mange, M.A. (1993) Alluvial fan sedimentation and structure of the southern Molasse Basin margin, lake Thun area, Switzerland. Eclogae Geol. Helv., 83, 717–750.
    [Google Scholar]
  52. Schlunegger, F. & Mosar, J. (2010) The last erosional stage of the Molasse Basin and the Alps. Int. J. Earth Sci., in press. doi: DOI: 10.1007/s00531-010-0607-1.
    [Google Scholar]
  53. Schlunegger, F., Rieke‐Zapp, D. & Ramseyer, K. (2007) Possible environmental effects on the evolution of the Alps‐Molasse Basin system. Swiss J. Geosci., 100, 383–405.
    [Google Scholar]
  54. Schmid, S.M., Fügenschuh, B., Kissling, E. & Schuster, R. (2004) TRANSMED transects IV, V and VI: three lithospheric transects across the Alps and their forelands. In: The TRANSMED Atlas: The Mediterranean Region from Crust to Mantle (Ed. by W.Cavazza , et al. Springer Verlag, Berlin, Heidelberg, New York.
    [Google Scholar]
  55. Schmid, S.M., Pfiffner, O.A., Froitzheim, N., Schönborn, G. & Kissling, E. (1996) Geophysical‐geological transect and tectonic evolution of the Swiss‐Italian Alps. Tectonics, 15, 1036–1064.
    [Google Scholar]
  56. Schumer, R. & Jerolmak, D.J. (2009) Real and apparent changes in sediment deposition rates through time. J. Geophys. Res., 114, F00A06, doi: DOI: 10.1029/2009JF001266.
    [Google Scholar]
  57. Serpelloni, E., Anzidei, M., Balsi, P., Casula, G. & Galvani, A. (2005) Crustal velocity and strain‐rate fields in Italy and surrounding regions: new results from the analysis of permanent and non-permanent GPS networks. Geophys. J. Int., 161, 861–880.
    [Google Scholar]
  58. Stewart, R.J. & Brandon, M.T. (2004) Detrital‐zircon fission‐track ages for the “Hoh Formation”: implications for the late Cenozoic evolution of the Cascadia subduction wedge. GSA Bull., 116, 60–75.
    [Google Scholar]
  59. Ustaszewski, K. & Schmid, S.M. (2006) Control of preexisting faults on geometry and kinematics in the northernmost part of the Jura fold‐and‐thrust belt. Tectonics, 25, TC5003, doi: DOI: 10.1029/2005TC001915.
    [Google Scholar]
  60. van Dam, J.A. (2006) Geographic and temporal patterns in the late Neogene (12‐3 Ma) aridification of Europe: the use of small mammals as paleoprecipitation proxies. Palaeogeogr. Palaeoclimatol. Palaeoeco., 238, 190–218.
    [Google Scholar]
  61. Vernon, A.J., van der Beek, P.A., Sinclair, H.D. & Rahn, M.K. (2008) Increase in Late Cenozoic denudation of the European Alps confirmed by analysis of a fission track thermochronology database. Earth Planet. Sci. Lett., 270, 316–329.
    [Google Scholar]
  62. Vollmayr, T. & Wendt, A. (1987) Die Erdgasbohrung Entlebuch 1, ein Tiefenaufschluss am Alpennordrand. Bull. Schweiz. Petrol.-Geol. -Ing., 53, 67–79.
    [Google Scholar]
  63. von Blackenburg, F. & Davies, J.H. (1995) Slab breakoff: a model for syncollisional magmatism and tectonics in the Alps. Tectonics, 14, 120–131.
    [Google Scholar]
  64. von Hagke, C., Cederbom, C., Lindow, J., Oncken, O. & Schlunegger, F. (2010). Post 5 Ma thrusting in the Northern Alpine Foreland Basin – insights from structural geology and new (U‐Th)/He and Fission Track data. Geophysical Research Abstracts, 12, EGU2010‐8858‐1.
  65. Willenbring, J.K. & von Blanckenburg, F. (2010) Long‐term stability of global erosion rates and weathering during late‐Cenozoic cooling. Nature, 465, 211–214.
    [Google Scholar]
  66. Willett, S.D. & Schlunegger, F. (2010) The last phase of deposition in the Swiss Molasse Basin: from foredeep to negative-alpha basin. Basin Res., in press, doi: DOI: 10.1111/j.1365-2117.2009.00435.x.
    [Google Scholar]
  67. Willett, S.D., Schlunegger, F. & Picotti, V. (2006) Messinian climate change and erosional destruction of the central European Alps. Geology, 34, 613–616.
    [Google Scholar]
  68. Williams, D.F., Kuzmin, M.I., Kawai, T., Khakhaev, B.N., Pevzner, L.A., Karabanov, E.B., Peck, J., King, J., Kravchinsky, V., Geletti, V., Kolmnichkov, G., Gvodzkov, A., Propopenko, A.A., Tsukahara, H., Oberhänsli, H., Schwab, M., Weil, D., Grachev, M.A., Khylystov, O. & Mandelbaum, A. (1997) Continuous paleoclimate record recovered for the last 5 Million years. Eos, 78, 597–601.
    [Google Scholar]
  69. Zhang, P., Molnar, P. & Downs, W.R. (2001) Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate change on erosion rates. Nature, 410, 891–897.
    [Google Scholar]
  70. Ziegler, P.A. & Fraefel, M. (2009) Response of drainage systems to Neogene evolution of the Jura fold‐thrust beld and Upper Rhein Graben. Swiss J. Geosci., 102, 57–75.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2011.00501.x
Loading
/content/journals/10.1111/j.1365-2117.2011.00501.x
Loading

Data & Media loading...

Supplements

Radial plots for each sample illustrating AFT single grain ages and statistically defined grain age populations (dashed lines). The radial plots were constructed following Galbraith (2005). [Galbraith, R.F (Chapman & Hall, London, 2005)].Note that the axes have identical scales in all radial plots. Single grain AFT ages are plotted against Dpar value for all new samples in each well (i.e., samples listed in Table 1). Apatite grains without Dpar measurement are plotted on Dpar=0. Dashed area marks stratigraphic age interval for the grains plotted and grey bar marks the Dpar interval considered in the erosion estimates. Forward modeling of AFT age reduction trend.Please note: Wiley‐Blackwell is not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.

Supporting info item

Supporting info item

Supporting info item

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error