1887
Volume 23, Issue 5
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

Detrital fission‐track studies on sedimentary basins surrounding eroding mountain belts provide a powerful tool to reconstruct exhumation histories of the source area. However, examples from active arc‐trench systems are sparse. In this study, we report detrital apatite fission‐track (AFT) data from Holocene and Pleistocene turbiditic trench and modern river sediments at the Chilean margin (36°S‐47°S). Sediment petrography and detrital AFT data point to different major sediment sources, underlining the need for multidisciplinary studies: whereas sediment petrography indicates the erosion of large volumes of volcanic detritus, no such volcanic signal is seen in the detrital age pattern. Areally subordinate plutonic units are identified as the main, often unique sources. This result has important implications for studies of fossil systems, where the feeder areas are eroded, and where the youngest age population is often interpreted to indicate active volcanism. For the southernmost part of the study area in the Patagonian Andes, where the source area is mainly composed of granitoids, the sediment is derived from only small portions along the main divide, pointing to focused glacial erosion there. Our detrital AFT data show no exhumational signal that could be related to the subduction of the actively spreading Chile Ridge at . 47°S and to the opening of a slab window beneath the South American Plate.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2011.00504.x
2011-02-16
2024-03-29
Loading full text...

Full text loading...

References

  1. Adriasola, A.C., Thomson, S.N., Brix, M.R., Herve, F. & Stoeckhert, B. (2006) Post‐magmatic cooling and late Cenozoic denudation of the North Patagonian Batholith in the Los Lagos region of Chile, 41°–42°15′. Int. J. Earth Sci., 95, 504–528.
    [Google Scholar]
  2. Bangs, N.L. & Cande, S.C. (1997) Episodic development of a convergent margin inferred from structures and processes along the southern Chile margin. Tectonics, 16, 489–503.
    [Google Scholar]
  3. Behrmann, J.H. & Kopf, A. (2001) Balance of tectonically accreted and subducted sediment at the Chile Triple Junction. Int. J. Earth Sci., 90, 753–768.
    [Google Scholar]
  4. Behrmann, J.H., Lewis, S.D., Cande, S.C., Musgrave, R., Bangs, N., Boden, P., Brown, K., Collombat, H., Didenko, A.N., Didyk, B.M., Froelich, P.N., Golovchenko, X., Forsythe, R., Kurnosov, V., Lindsley, G.N., Marsaglia, K., Osozawa, S., Prior, D., Sawyer, D., Scholl, D., Spiegler, D., Strand, K., Takahashi, K., Torres, M., Vega, F.M., Vergara, H. & Waseda, A.&Ocean Drilling Program, L., Shipboard Scientific Party, College Station, TX, United States. (1994) Tectonics and geology of spreading ridge subduction at the Chile Triple Junction; a synthesis of results from Leg 141 of the Ocean Drilling Program. Geol. Rundsch., 83, 832–852.
    [Google Scholar]
  5. Behrmann, J.H., Lewis, S.D.H., Musgrave, R.J., Arqueros, R., Bangs, N., Boden, P., Brown, K.M., Collombat, H., Didenko, A.N., Didyk, B.M., Forsythe, R., Froelich, P.N., Golovchenko, X., Kurnosov, V.B., Kvenvolden, K.A., Lindsley‐Griffin, N., Marsaglia, K., Osozawa, S., Prior, D.J., Sawyer, D.S., Scholl, D.C., Spiegler, D., Strand, K., Takahashi, K., Torres, M.E., Vega Faundez, M., Vergara, H.P. & Waseda, A. (1992) Proc. Ocean Drilling Prog., Part A: Initial Rep., 141, 708 pp.
    [Google Scholar]
  6. Bernet, M., Brandon, M., Garver, J., Balestieri, M.L., Ventura, B. & Zattin, M. (2009) Exhuming the Alps through time: clues from detrital zircon fission-track thermochronology. Basin Res., 21, 781–798.
    [Google Scholar]
  7. Bernet, M. & Spiegel, C. (2004) Introduction: detrital thermochronology. In: Detrital Thermochronology – Provenance Analysis, Exhumation, and Landscape Evolution of Mountain Belts (Ed. by M.Bernet & C.Spiegel ), Geol. Soc. Am. Spec. Publ., 378, 1–8.
    [Google Scholar]
  8. Bernet, M., Zattin, M., Garver, J.I., Brandon, M.T. & Vance, J.A. (2001) Steady‐state exhumation of the European Alps. Geology, 29, 35–38.
    [Google Scholar]
  9. Blisniuk, P., Stern, L.A., Chamberlain, C.P., Zeitler, P.K., Ramos, V.A., Sobel, E.R., Haschke, M., Strecker, M.R. & Warkus, F. (2006) Links between mountain uplift, climate and surface processes in the Southern Patagonian Andes. In: The Andes – Active Subduction Orogeny (Ed. by O.Oncken , G.Chong , G.Franz , P.Giese , H.‐J.Götze , V.A.Ramos , M.R.Strecker & P.Wigger ), pp. 429–440. Springer, Berlin, Heidelberg.
    [Google Scholar]
  10. Blisniuk, P.M., Stern, L.A., Chamberlain, C.P., Idleman, B. & Zeitler, P.K. (2005) Climatic and ecologic changes during Miocene surface uplift in the Southern Patagonian Andes. Earth Planet. Sci. Lett., 230, 125–142.
    [Google Scholar]
  11. Bourgois, J., Guivel, C., Lagabrielle, Y., Calmus, T., Boulegue, J. & Daux, V. (2000) Glacial‐interglacial trench supply variation, spreading‐ridge subduction, and feedback controls on the Andean margin development at the Chile Triple Junction area (45–48°S). J. Geophys. Res., 105, 8355–8386.
    [Google Scholar]
  12. Bourgois, J., Martin, H., Lagabrielle, Y., Le, M.J. & Frutos, J.J. (1996) Subduction erosion related to spreading‐ridge subduction; Taitao Peninsula (Chile Margin Triple Junction Area). Geology, 24, 723–726.
    [Google Scholar]
  13. Breitsprecher, K. & Thorkelson, D.J. (2009) Neogene kinematic history of Nazca–Antarctic–Phoenix slab windows beneath Patagonia and the Antarctic Peninsula. Tectonophysics, 464, 10–20.
    [Google Scholar]
  14. Brewer, I.D., Burbank, D.W. & Hodges, K.V. (2003) Modelling detrital cooling‐age populations: insights from two Himalayan catchments. Basin Res., 15, 305–320.
    [Google Scholar]
  15. Cande, S.C. & Leslie, R.B. (1986) Late Cenozoic Tectonics of the Southern Chile Trench. J. Geophys. Res., 91, 471–496.
    [Google Scholar]
  16. Cande, S.C., Leslie, R.B., Parra, J.C. & Hobart, M. (1987) Interaction between the Chile Ridge and Chile Trench; geophysical and geothermal evidence. J. Geophys. Res., 92, 495–520.
    [Google Scholar]
  17. Cembrano, J., Lavenu, A., Reynolds, P., Arancibia, G., Lopez, G. & Sanhueza, A. (2002) Late Cenozoic transpressional ductile deformation north of the Nazca‐South America‐Antarctica Triple Junction. Tectonophysics, 354, 289–314.
    [Google Scholar]
  18. Cembrano, J., Schermer, E., Lavenu, A. & Sanhueza, A. (2000) Contrasting nature of deformation along an intra‐arc shear zone, the Liquine‐Ofqui Fault Zone, Southern Chilean Andes. Tectonophysics, 319, 129–149.
    [Google Scholar]
  19. Cerveny, P.F., Naeser, N.D., Zeitler, P.K., Naeser, C.W. & Johnson, N.M. (1988) History of uplift and relief of the Himalaya during the past 18 million years: evidence from fission‐track ages of detrital zircons from sandstones of the Siwalik group. In: New Perspectives in Basin Analysis (Ed. by K.Kleinspehn & C.Paola ), pp. 43–61. Springer Verlag, New York.
    [Google Scholar]
  20. Cisternas, M.E. & Frutos, J. (1994) Evolución tectónica paleogeográfica de la cuenca terciaria de Los Andes Del Sur de Chile. 7° Congreso Geológico Chileno, Concepción.
  21. Clift, P.D., Pecher, I., Kukowski, N. & Hampel, A. (2003) Tectonic erosion of the Peruvian forearc, Lima Basin, by subduction and Nazca ridge collision. Tectonics, 22 (3), 1023.
    [Google Scholar]
  22. Contardo, X., Cembrano, J., Jensen, A. & Diaz‐Naveas, J. (2008) Tectono‐sedimentary evolution of marine slope basins in the Chilean forearc (33°30′‐36°50′S): insights into their link with the subduction process. Tectonophysics, 459, 206–218.
    [Google Scholar]
  23. Emparan, C., Suarez, M. & Munoz, J. (1992) Hoja Curacautín, Regiones de la Araucania y del Biobio. Mapa, Escala 1:250.000. Carta Geológica De Chile, No.71, Sernageomin, Santiago De Chile.
  24. Flüh, E. & Grevemeyer, I. (2005) FS Sonne Fahrtbericht SO 181 TIPTEQ from The Incoming Plate to mega Thrust EarthQuakes. IFM ‐ Geomar Report, 2.
  25. Forsythe, R. & Nelson, E. (1985) Geological manifestations of ridge collision; evidence from the Golfo de Peñas‐Taitao Basin, Southern Chile. Tectonics, 4, 477–495.
    [Google Scholar]
  26. Forsythe, R.D., Nelson, E.P., Carr, M.J., Kaeding, M.E., Herve, M., Mpodozis, C., Soffia, J.M. & Harambour, S. (1986) Pliocene near‐trench magmatism in Southern Chile; a possible manifestation of ridge collision. Geology, 14, 23–27.
    [Google Scholar]
  27. Galbraith, R.F. & Green, P.F. (1990) Estimating the component ages in a finite mixture. Nucl. Tracks, 17, 197–206.
    [Google Scholar]
  28. Gallagher, K., Brown, R. & Johnson, C. (1998) Fission‐track analysis and its applications to geological problems. Annu. Rev. Earth Planet. Sci, 26, 519–572.
    [Google Scholar]
  29. Garver, J.I., Brandon, M.T., Roden, T.M.K. & Kamp, P.J.J. (1999) Exhumation history of orogenic highlands determined by detrital fission‐track thermochronology. In: Exhumation Processes; Normal Faulting, Ductile Flow and Erosion (Ed. by U.Ring , M.T.Brandon , G.S.Lister & S.D.Willett ), Geol. Soc. (London) Spec. Publ., 154, 283–304.
    [Google Scholar]
  30. George, A.D. & Hegarty, K.A. (1995) Fission‐track analysis of detrital apatites from sites 859, 860, and 862, Chile Triple Junction. Proc. Ocean Drill. Prog., Sci. Res., 141, 181–190.
    [Google Scholar]
  31. Glodny, J., Graefe, K., Echtler, H. & Rosenau, M. (2008) Mesozoic to Quaternary continental margin dynamics in South‐Central Chile (36–42°S): the apatite and zircon fission-track perspective. Int. J. Earth Sci., 97, 1271–1291.
    [Google Scholar]
  32. Gorring, M., Singer, B., Gowers, J. & Kay, S.M. (2003) Plio‐Pleistocene basalts from the Meseta del Lago Buenos Aires, Argentina: evidence for asthenosphere-lithosphere interactions during slab window magmatism. Chem. Geol., 193, 215–235.
    [Google Scholar]
  33. Gorring, M.L., Kay, S.M., Zeitler, P.K., Ramos, V.A., Rubiolo, D., Fernandez, M.I. & Panza, J.L. (1997) Neogene Patagonian plateau lavas: continental magmas associated with ridge collision at the Chile triple junction. Tectonics, 16, 1–17.
    [Google Scholar]
  34. Groome, W.G. & Thorkelson, D.J. (2009) The three‐dimensional thermo‐mechanical signature of ridge subduction and slab window migration. Tectonophysics, 464, 70–83.
    [Google Scholar]
  35. Guillaume, B., Martinod, J., Husson, L., Roddaz, M. & Riquelme, R. (2009) Neogene uplift of Central Eastern Patagonia: dynamic response to active spreading ridge subduction? Tectonics, 28, TC2009, doi:DOI: 10.1029/2008TC002324.
    [Google Scholar]
  36. Guivel, C., Lagabrielle, Y., Bourgois, J., Martin, H., Arnaud, N., Fourcade, S., Cotten, J. & Maury, R.C. (2003) Very shallow melting of oceanic crust during spreading ridge subduction; origin of near‐trench Quaternary volcanism at the Chile Triple Junction. J. Geophys. Res. Solid Earth, 108.
    [Google Scholar]
  37. Guivel, C., Morata, D., Pelleter, E., Espinoza, F., Maury, R.C., Lagabrielle, Y., Polve, M., Bellon, H., Cotten, J., Benoit, M., Suarez, M. & De La Cruz, R. (2006) Miocene to Late Quaternary Patagonian basalts (46–47°S): geochronometric and geochemical evidence for slab tearing due to active spreading ridge subduction. J. Volcanol. Geotherm. Res., 149, 346–370.
    [Google Scholar]
  38. Hampel, A., Adam, J. & Kukowski, N. (2004) Response of the tectonically erosive south Peruvian forearc to subduction of the Nazca Ridge: analysis of three-dimensional analogue experiments. Tectonics, 23.
    [Google Scholar]
  39. Haschke, M., Sobel, E.R., Blisniuk, P., Strecker, M.R. & Warkus, F. (2006) Continental response to active ridge subduction. Geophys. Res. Lett., 33.
    [Google Scholar]
  40. Hebbeln, D., Lamy, F., Mohtadi, M. & Echtler, H. (2007) Tracing the impact of glacial‐interglacial climate variability on erosion of the Southern Andes. Geology, 35, 131–134.
    [Google Scholar]
  41. Heberer, B., Röser, G., Behrmann, J.H., Rahn, M.K. & Kopf, A. (2010) Holocene sediments from the Southern Chile trench: a record of active margin magmatism, tectonics, and palaeoseismicity. J. Geol. Soc. (London, UK), 167, 539–553.
    [Google Scholar]
  42. Herron, E.M., Cande, S.C. & Hall, B.R. (1981) An active spreading center collides with a subduction zone; a geophysical survey of the Chile margin triple junction. In: Nazca Plate; Crustal Formation and Andean Convergence (Ed. by L.D.Kulm , J.Dymond , E.J.Dasch , D.M.Hussong & R.Roderick ), Mem. – Geol. Soc. Am., 154, 683–701.
    [Google Scholar]
  43. Hervé, F., Pankhurst, R.J., Fanning, C.M., Calderon, M. & Yaxley, G.M. (2007) The South Patagonian Batholith: 150 My of granite magmatism on a plate margin. Lithos, 97, 373–394.
    [Google Scholar]
  44. Hurford, A.J. & Green, P.F. (1982) A users' guide to fission‐track dating calibration. Earth Planet. Sci. Lett., 59, 343–354.
    [Google Scholar]
  45. Jordan, T.E., Burns, W.M., Veiga, R., Pangaro, F., Copeland, P., Kelley, S. & Mpodozis, C. (2001) Extension and basin formation in the Southern Andes caused by increased convergence rate: a Mid-Cenozoic trigger for the Andes. Tectonics, 20, 308–324.
    [Google Scholar]
  46. Kay, S.M., Ramos, V.A. & Marquez, M. (1993) Evidence in Cerro‐Pampa volcanic rocks for slab‐melting prior to ridge‐trench collision in Southern South America. J. Geol., 101, 703–714.
    [Google Scholar]
  47. Klump, J., Hebbeln, D. & Wefer, G. (2000) The impact of sediment provenance on barium‐based productivity estimates. Mar. Geol., 169, 259–271.
    [Google Scholar]
  48. Lagabrielle, Y., Suarez, M., Malavieille, J., Morata, D., Espinoza, F., Maury, R.C., Scalabrino, B., Barbero, L., De La Cruz, R., Rossello, E. & Bellon, H. (2007) Pliocene extensional tectonics in the Eastern Central Patagonian Cordillera: geochronological constraints and new field evidence. Terra Nova, 19, 413–424.
    [Google Scholar]
  49. Lagabrielle, Y., Suarez, M., Rossello, E.A., Herail, G., Martinod, J., Regnier, M. & De La Cruz, R. (2004) Neogene to quaternary tectonic evolution of the Patagonian Andes at the latitude of the Chile Triple Junction. Tectonophysics, 385, 211–241.
    [Google Scholar]
  50. Lamy, F., Hebbeln, D. & Wefer, G. (1998) Terrigenous sediment supply along the Chilean continental margin: modern regional pattern of texture and composition. Geol. Rundsch., 87, 477–494.
    [Google Scholar]
  51. Lara, L.E., Rodríguez, C., Moreno, H. & Pérez de Arce, C. (2001) Geocronología K‐Ar y geoquímica del volcanismo Plioceno Superior‐Pleistoceno de los Andes del Sur (39–42°S). Rev. Geol. Chile, 28, 67–90.
    [Google Scholar]
  52. Laursen, J. & Normark, W.R. (2002) Late Quaternary evolution of the San Antonio submarine canyon in the Central Chile forearc (similar to 33°S). Mar. Geol., 188, 365–390.
    [Google Scholar]
  53. López‐Escobar, L., Cembrano, J. & Moreno, H. (1995) Geochemistry and tectonics of the Chilean Southern Andes basaltic Quaternary volcanism (37°–46°S). Rev. Geol. Chile, 22, 219–234.
    [Google Scholar]
  54. López‐Escobar, L. & Vergara, M. (1997) Eocene‐Miocene longitudinal depression and quaternary volcanism in the Southern Andes, Chile (33–42.5°S): a geochemical comparison. Rev. Geol. Chile, 24, 227–244.
    [Google Scholar]
  55. Malusà, M.G., Zattin, M., Andò, S., Garzanti, E. & Vezzoli, G. (2009) Focused erosion in the Alps constrained by fission‐track ages on detrital apatites. In: Thermochronological Methods: from Paleotemperature Constraints to Landscape evolution Models (Ed by F.Lisker , B.Ventura & U.Glasmacher ), Geol. Soc. Lond. Spec. Publ., 324, 141–152.
    [Google Scholar]
  56. Marsaglia, K.M., Torrez, X.V., Padilla, I. & Rimkus, K.C. (1995) Provenance of Pleistocene and Pliocene sand and sandstone, ODP Leg 141, Chile margin. Proc. Ocean Drill. Prog., Sci. Res., 141, 133–151.
    [Google Scholar]
  57. Marshak, R.S. & Karig, D.E. (1977) Triple junctions as a cause for anomalously near‐trench igneous activity between trench and volcanic Arc. Geology, 5, 233–236.
    [Google Scholar]
  58. Martin, H. (1986) Effect of steeper Archean geothermal gradient on geochemistry of subduction‐zone magmas. Geology, 14, 753–756.
    [Google Scholar]
  59. Melnick, D. & Echtler, H.P. (2006) Inversion of forearc basins in South‐Central Chile caused by rapid glacial age trench fill. Geology, 34, 709–712.
    [Google Scholar]
  60. Muñoz, J. & Stern, C.R. (1989) Alkaline magmatism within the segment 38°–39° S of the Plio‐Quaternary Volcanic Belt of the southern South American continental margin. J. Geophys. Res. Solid Earth, 94, 4545–4560.
    [Google Scholar]
  61. Muñoz, J., Troncoso, R., Duhart, P., Crignola, P., Farmer, L. & Stern, C.R. (2000) The relation of the Mid‐Tertiary Coastal Magmatic Belt in South‐Central Chile to the Late Oligocene increase in plate convergence rate. Rev. Geol. Chile, 27, 177–203.
    [Google Scholar]
  62. Murdie, R.E. & Russo, R.M. (1999) Seismic anisotropy in the region of the Chile margin triple junction. J. South Am. Earth Sci., 12, 261–270.
    [Google Scholar]
  63. Naeser, N.D., Naeser, C.W. & Mcculloh, T.H. (1989) The Application of Fission‐Track Dating to the Depositional and Thermal History of Rocks in Sedimentary Basins. Springer‐Verlag, New York, NY, USA.
    [Google Scholar]
  64. Pankhurst, R.J., Weaver, S.D., Herve, F. & Larrondo, P. (1999) Mesozoic‐Cenozoic evolution of the North Patagonian Batholith in Aysén, Southern Chile. J. Geol. Soc. (London, UK), 156, 673–694.
    [Google Scholar]
  65. Parada, M., Lopez‐Escobar, L., Oliveros, V., Fuentes, F., Morata, D., Calderon, M., Aguirre, L., Feraud, G., Espinoza, C., Moreno, H., Figueroa, O., Munoz Bravo, J., Troncoso Vasquez, R. & Stern, C.R. (2007) Andean magmatism. In: The Geology of Chile (Ed. by T.Moreno & W.Gibbons ), pp. 115–146. Geological Society, Bath, UK.
    [Google Scholar]
  66. Ramos, V.A. (2005) Seismic ridge subduction and topography: Foreland deformation in the Patagonian Andes. Tectonophysics, 399, 73–86.
    [Google Scholar]
  67. Ramos, V.A. & Kay, S.M. (1992) Southern Patagonian plateau basalts and deformation; backarc testimony of ridge collisions. Tectonophysics, 205, 261–282.
    [Google Scholar]
  68. Ranero, C.R., Von Huene, R., Weinrebe, W. & Reichert, C. (2006) Tectonic processes along the Chile convergent margin. In: The Andes – Active Subduction Orogeny (Ed. by O.Oncken , G.Chong , G.Franz , P.Giese , H.‐J.Götze , V.A.Ramos , M.R.Strecker & P.Wigger ), pp. 91–122. Springer, Berlin, Heidelberg.
    [Google Scholar]
  69. Rehak, K., Strecker, M.R. & Echtler, H.P. (2008) Morphotectonic segmentation of an active forearc, 37°–41°S, Chile. Geomorphology, 94, 98–116.
    [Google Scholar]
  70. Rosenau, M., Melnick, D. & Echtler, H. (2006) Kinematic constraints on intra‐arc shear and strain partitioning in the Southern Andes between 38°S and 42°S latitude. Tectonics, 25.
    [Google Scholar]
  71. Röser, G. (2007) Petrography, physical properties, and geotechnical behavior of modern sediments, Southern Chile Trench. Doctoral Thesis, Univ. Freiburg, p. 129.
  72. Saillard, M., Hall, S.R., Audin, L., Farber, D.L., Hérail, G., Martinod, J., Regard, V., Finkel, R.C. & Bondoux, F. (2009) Non‐steady long‐term uplift rates and Pleistocene marine terrace development along the Andean margin of Chile (31°S) inferred from 10Be dating. Earth Planet. Sci. Lett., 277, 50–63.
    [Google Scholar]
  73. Seifert, W., Rosenau, M. & Echtler, H. (2005) Crystallization depths of granitoids of South Central Chile estimated by Al‐in‐hornblende geobarometry: implications for mass transfer processes along the active continental margin. Neues Jahrb. Geol. Palaeontol. Abh., 236, 115–127.
    [Google Scholar]
  74. Sepúlveda, S.A., Rebolledo, S. & Vargas, G. (2006) Recent catastrophic debris flows in Chile: geological hazard, climatic relationships and human response. Quat. Int., 158, 83–95.
    [Google Scholar]
  75. SERNAGEOMIN.
    SERNAGEOMIN. (2003) Mapa geológico de Chile:Versión Digital. Servicio Nacional de Geología y Minería, No. 4, Santiago De Chile.
  76. Sisson, V.B. & Pavlis, T.L. (1993) Geologic consequences of plate reorganization – an example from the Eocene Southern Alaska rore‐arc. Geology, 21, 913–916.
    [Google Scholar]
  77. Smith, W.H.F. & Sandwell, D.T. (1997) Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277, 1956–1962.
    [Google Scholar]
  78. Spiegel, C., Kuhlemann, J., Dunkl, I., Frisch, W., Von Eynatten, H. & Balogh, K. (2000) The Erosion history of the Central Alps: evidence from Zircon Fission-track data of the Foreland basin sediments. Terra Nova, 12, 163–170.
    [Google Scholar]
  79. Spiegler, D. & Müller, C. (1995) Correlation of calcareous nannoplankton and planktonic foraminifer biostratigraphy off the coast of southern Chile. Proc. Ocean Drill. Prog., Sci. Res., 141, 193–211.
    [Google Scholar]
  80. Spikings, R., Dungan, M., Foeken, J., Carter, A., Page, L. & Stuart, F. (2008) Tectonic response of the Central Chilean Margin (35–38°S) to the collision and subduction of heterogeneous oceanic crust: a thermochronological study. J. Geol. Soc. (London, UK), 165, 941–953.
    [Google Scholar]
  81. Spikings, R.A., Winkler, W., Seward, D. & Handler, R. (2001) Along‐strike variations in the thermal and tectonic response of the continental Ecuadorian Andes to the collision with heterogeneous oceanic crust. Earth Planet. Sci. Lett., 186, 57–73.
    [Google Scholar]
  82. Stern, C. (1989) Pliocene to present migration of the volcanic front, Andean Southern Volcanic front. Rev. Geol. Chile, 16, 145–162.
    [Google Scholar]
  83. Stern, C.R. (2004) Active Andean volcanism: its geologic and tectonic setting. Rev. Geol. Chile, 31, 161–206.
    [Google Scholar]
  84. Stewart, R.J. & Brandon, M.T. (2004) Detrital zircon fission‐track ages for the “Hoh Formation”: implications for late Cenozoic evolution of the Cascadia subduction wedge. Geol. Soc. Am. Bull., 116, 60–75.
    [Google Scholar]
  85. Suárez, M., De La Cruz, R. & Bell, C.M. (2000) Timing and origin of deformation along the Patagonian fold and thrust belt. Geol. Mag., 137, 345–353.
    [Google Scholar]
  86. Thomson, S.N. (2002) Late Cenozoic geomorphic and tectonic evolution of the Patagonian Andes between latitudes 42°S and 46°S; an appraisal based on fission‐track results from the transpressional intra‐arc Liquiñe‐Ofqui fault zone. Geol. Soc. Am. Bull., 114, 1159–1173.
    [Google Scholar]
  87. Thomson, S.N., Brandon, M.T., Tomkin, J.H., Reiners, P.W., Vásquez, C. & Wilson, N.J. (2010) Glaciation as a destructive and constructive control on mountain building. Nature, 467, 313–317.
    [Google Scholar]
  88. Thomson, S.N., Herve, F. & Stoeckhert, B. (2001) Mesozoic‐Cenozoic denudation history of the Patagonian Andes (Southern Chile) and its correlation to different subduction processes. Tectonics, 20, 693–711.
    [Google Scholar]
  89. Thorkelson, D.J. & Taylor, R.P. (1989) Cordilleran slab windows. Geology, 17, 833–836.
    [Google Scholar]
  90. Thornburg, T.M. & Kulm, L.D. (1987a) Sedimentation in the Chile Trench; petrofacies and provenance. J. Sediment. Petrol., 57, 55–74.
    [Google Scholar]
  91. Thornburg, T.M. & Kulm, L.D. (1987b) Sedimentation in the Chile trench; depositional morphologies, lithofacies, and stratigraphy; with Suppl. Data 87‐03. Geol. Soc. Am. Bull., 98, 33–52.
    [Google Scholar]
  92. Thornburg, T.M., Kulm, L.D. & Hussong, D.M. (1990) Submarine‐fan development in the Southern Chile Trench; a dynamic interplay of tectonics and sedimentation. Geol. Soc. Am. Bull., 102, 1658–1680.
    [Google Scholar]
  93. Van der Beek, P., Robert, X., Mugnier, J.L., Bernet, M., Huyghe, P. & Labrin, E. (2006) Late Miocene ‐ Recent exhumation of the Central Himalaya and recycling in the foreland basin assessed by apatite fission‐track thermochronology of Siwalik sediments, Nepal. Basin Res., 18, 413–434.
    [Google Scholar]
  94. Völker, D., Reichel, T., Wiedicke, M. & Heubeck, C. (2008) Turbidites deposited on Southern Central Chilean seamounts: evidence for energetic turbidity currents. Mar. Geol., 251, 15–31.
    [Google Scholar]
  95. Völker, D., Wiedicke, M., Ladage, S., Gaedicke, C., Reichert, C., Rauch, K., Kramer, W. & Heubeck, C. (2006) Latitudinal variation in sedimentary processes in the Peru‐Chile Trench Off Central Chile. In: The Andes – Active Subduction Orogeny (Ed. by O.Oncken , G.Chong , G.Franz , P.Giese , H.‐J.Götze , V.A.Ramos , M.R.Strecker & P.Wigger ), pp. 193–216. Springer, Berlin, Heidelberg.
    [Google Scholar]
  96. Wiedicke‐Hombach, M. & ShipboardScientificParty (2002) Cruise Report Sonne SO161/5 (Subduction Processes of Chile) – Geology‐Geochemistry‐Heatflow. Archive Number 11241/02.
  97. Wipf, M., Zeilinger, G., Seward, D. & Schlunegger, F. (2008) Focused subaerial erosion during ridge subduction: impact on the geomorphology in South-Central Peru. Terra Nova, 20, 1–10.
    [Google Scholar]
  98. Yerino, L.N. & Maynard, J.B. (1984) Petrography of modern marine sands from the Peru‐Chile Trench and adjacent areas. Sedimentology, 31, 83–89.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2011.00504.x
Loading
/content/journals/10.1111/j.1365-2117.2011.00504.x
Loading

Data & Media loading...

Supplements

. Detailed AFT grain age data and graphical plots as produced with Binomfit.Please note: Wiley‐Blackwell is not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.

Supporting info item

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error