1887
Volume 23, Issue 6
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

Deeply incised drainage networks are thought to be robust and not easily modified, and are commonly used as passive markers of horizontal strain. Yet, reorganizations (rearrangements) appear in the geologic record. We provide field evidence of the reorganization of a Miocene drainage network in response to strike–slip and vertical displacements in Guatemala. The drainage was deeply incised into a 50‐km‐wide orogen located along the North America–Caribbean plate boundary. It rearranged twice, first during the Late Miocene in response to transpressional uplift along the Polochic fault, and again in the Quaternary in response to transtensional uplift along secondary faults. The pattern of reorganization resembles that produced by the tectonic defeat of rivers that cross growing tectonic structures. Compilation of remote sensing data, field mapping, sediment provenance study, grain‐size analysis and Ar40/Ar39 dating from paleovalleys and their fill reveals that the classic mechanisms of river diversion, such as river avulsion over bedrock, or capture driven by surface runoff, are not sufficient to produce the observed diversions. The sites of diversion coincide spatially with limestone belts and reactivated fault zones, suggesting that solution‐triggered or deformation‐triggered permeability have helped breaching of interfluves. The diversions are also related temporally and spatially to the accumulation of sediment fills in the valleys, upstream of the rising structures. We infer that the breaching of the interfluves was achieved by headward erosion along tributaries fed by groundwater flow tracking from the valleys soon to be captured. Fault zones and limestone belts provided the pathways, and the aquifers occupying the valley fills provided the head pressure that enhanced groundwater circulation. The defeat of rivers crossing the rising structures results essentially from the tectonically enhanced activation of groundwater flow between catchments.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2011.00510.x
2011-05-18
2024-04-24
Loading full text...

Full text loading...

References

  1. Ambrose, W.A., Jones, R., Wawrzyniec, T., Fouad, K., Dutton, S.P., Jennette, D.C., Elshayeb, T., Sánchez‐Barreda, L., Solis, H., Meneses‐Rocha, J., Lugo, J., Aguilera, L., Berlanga, J., Miranda, L., Ruiz Morales, J. & Rojas, R. (2002) Upper Miocene and Pliocene shallow‐marine and deepwater, gas‐producing systems in the Macuspana Basin, southeastern Mexico. Gulf Coast Assoc. Geol. Soc. Trans., 52, 3–12.
    [Google Scholar]
  2. Anderson, T.H., Burkart, B., Clemons, R.E., Bohnenberger, O.H. & Blount, D.N. (1973) Geology of the western Altos Cuchumatanes, northwestern Guatemala. Geol. Soc. Am. Bull., 84, 305–826.
    [Google Scholar]
  3. Authemayou, C., Brocard, G., Teyssier, C., Simon‐Labric, T., Chiquín, E.N., Guttiéreez, A. & Morán‐Ical, S. (2011) Evolution of the Motagua‐Polochic transform system in relation to the migration of the Caribbean–North America‐Cocos plate boundary. Tectonics doi: DOI: 10.1029/2010TC02814.
    [Google Scholar]
  4. Baker, V.R., Kochel, R.C., Laity, J.E. & Howard, A.D. (1990) Spring sapping and valley network development. Geol. Soc. Am. Spec. Paper, 252, 235–265.
    [Google Scholar]
  5. Bishop, P. (1995) Drainage rearrangement by river capture, beheading and diversion. Progr. Phys. Geog., 19 (4), 449–473.
    [Google Scholar]
  6. Bonnet, S. (2009) Shrinking and splitting of drainage basins in orogenic landscapes from the migration of the main drainage divide. Nat. Geosci., 2, 766–771.
    [Google Scholar]
  7. Brookfield, M.E. (1998) The evolution of the great river systems of southern Asia during the Cenozoic India–Asia collision: rivers draining southwards. Geomorphology, 22, 285–312.
    [Google Scholar]
  8. Burbank, D.W., Meigs, A. & Brozović, N. (1996) Interactions of growing fold and coeval depositional systems. Basin Res., 8, 199–223.
    [Google Scholar]
  9. Burkart, B. (1978) Offset across the Polochic fault of Guatemala and Chiapas, Mexico. Geology, 6, 328–332.
    [Google Scholar]
  10. Burkart, B. (1983) Neogene North America–Caribbean plate boundary across northern Central America: offset along the Polochic Fault. Tectonophysics, 99, 251–270.
    [Google Scholar]
  11. Carfantan, J.‐C. (1986). Du système cordillerain nord‐américain au domaine caraïbe: étude géologique du Mexique méridional. PhD Thesis, Université de Savoie, 470pp.
  12. Castelltort, S. & Simpson, G. (2006) River spacing and drainage network growth in widening mountain ranges. Basin Res., 18, 267–276.
    [Google Scholar]
  13. Champel, B., van der Beek, P.A., Mugnier, J.L. & Leturmy, P. (2002) Growth and lateral propagation of fault‐related folds in the Siwaliks of western Nepal: Rates, mechanisms, and geomorphic signature. J. Geophys. Res., 107 (B6), 10.1029/2001JB000578.
    [Google Scholar]
  14. Cowie, P.A., Attal, M., Tucker, G.E., Whittaker, A.C., Naylor, M., Ganas, A. & Roberts, G.P. (2006) Investigating the surface process response to fault interaction and linkage using a numerical modelling approach. Basin Res., 18 (3), 231–266.
    [Google Scholar]
  15. Craw, D., Youngston, J.H. & Koons, P.O. (1999) Gold dispersal and placer formation in an active oblique collisional mountain belt, Southern Alps, New Zealand. Econom. Geol., 94, 605–614.
    [Google Scholar]
  16. Deaton, B.C. (1982). Relationship of the Colotenango conglomerate of Guatemala to the motion of the Polochic Fault during the Tertiary. MS thesis, University of Texas at Arlington, 97 pp.
  17. Deaton, B.C. & Burkart, B. (1984) Time of sinistral slip along the Polochic Fault of Guatemala. Tectonophysics, 102, 297–313.
    [Google Scholar]
  18. Dengo, G., Bohnenberger, O. & Bonis, S. (1970) Tectonics and volcanism along the Pacific Marginal Zone of Central America (1970). Int. J. Earth Sci., 59, 1215–1232.
    [Google Scholar]
  19. Densmore, A.L., Dawers, N.H., Gupta, S. & Guidon, R. (2005) What sets topographic relief in extensional footwall. Geology, 33 (6), 453–456.
    [Google Scholar]
  20. Donnelly, T.W., Horne, G.S., Finch, R.C. & Lopez‐Ramos, E. (1990) Northern Central America; the Maya and chortis blocks. In: The Geology of North America, H: The Caribbean Region (Ed. by G.Dengo & S.F.Case ), Geol. Soc. Am., 37–75.
    [Google Scholar]
  21. Douglass, J. & Schmeeckle, M. (2007) Analogue modeling of transverse drainage mechanisms. Geomorphology, 84, 22–43.
    [Google Scholar]
  22. Dunne, T. (1990) Hydrology, mechanics, and geomorphic implications of erosion by subsurface flow. Geol. Soc. Am. Spec. Paper, 252, 1–28.
    [Google Scholar]
  23. Ellis, M., Densmore, A.L. & Anderson, R.S (1999) Development of mountainous topography in the Basin Ranges, USA. Basin Res., 11, 21–41.
    [Google Scholar]
  24. Fourcade, E., Mendez, J., Azéma, J., Cros, P., DeWever, P., Duthou, J.‐L., Romero, J. & Michaud, F. (1994) Age présantonien‐campagnien de l'obduction des ophiolites du Guatemala. C. R. Acad. Sci. Paris, 318, 527–533.
    [Google Scholar]
  25. Goldsworthy, M. & Jackson, J. (2000) Active normal fault evolution in Greece revealed by geomorphology and drainage patterns. J. Geol. Soc. London, 157, 967–981.
    [Google Scholar]
  26. Graham, A. (1998) Studies in Neotropical paleobotany. XI. Late Tertiary vegetation and environments of southeastern Guatemala: palynofloras from the Mio‐Pliocene Padre Miguel Group and the Pliocene Herreria Formation. Am. J. Botany , 85 (10), 1409–1425.
  27. Gupta, S. (1997) Himalayan drainage patterns and the origin of fluvial megafans in the Ganges foreland basin. Geology, 26, 501–504.
    [Google Scholar]
  28. Hallet, B. & Molnar, P. (2001) Distorted drainage basins as markers of crustal strain east of the Himalaya. J. Geophys. Res., 106 (B7), 13697–13709.
    [Google Scholar]
  29. Harlow, G.E., Hemming, S.R., Ave Lallement, H.G., Sisson, V.B. & Sorensen, S.S. (2004) Two high‐pressure‐low temperature serpentinite‐matrix melange belts, Motagua fault zone, Guatemala: a record of Aptian and Maastrichtian collisions. Geology, 32 (1), 17–20.
    [Google Scholar]
  30. Hasbargen, L.E. & Paola, C. (2000) Landscape instability in an experimental drainage basin. Geology, 28 (12), 1067–1070.
    [Google Scholar]
  31. Hill, C.A. & Buecher, R.H. (2006) A karst connection model for Grand Canyon. Geol. Soc. Am. Abs. with Programs, 38, 6–35.
    [Google Scholar]
  32. Horton, B.K. & DeCelles, P.G. (2001) Modern and ancient fluvial megafans in the foreland basin system of the central Andes, southern Bolivia: implications for drainage network evolution in fold-thrust belts. Basin Res., 13, 43–63.
    [Google Scholar]
  33. Hovius, N. (1996) Regular spacing of drainage outlets from linear mountain belts. Basin Res., 8, 29–44.
    [Google Scholar]
  34. Howard, A.D. (1971) Simulation model of stream capture. Geol. Soc. Am. Bull., 82, 1355–1376.
    [Google Scholar]
  35. Humphrey, N.F. & Conrad, S.K. (2000) River incision or diversion in response to bedrock uplift. Geology, 28 (1), 43–46.
    [Google Scholar]
  36. Jackson, J., Ritz, J.‐F., Siame, L., Raisbeck, G., Yiou, F., Norris, R., Youngson, J. & Bennett, E. (2002) Fault growth and landscape development rates in Otago, New Zealand, using in situ cosmogenic 10Be, Earth Planet. Sci. Lett., 195, 185–193.
    [Google Scholar]
  37. Jordan, B.R., Sigurdsson, H., Carey, S., Lundin, S., Rogers, R.D., Singer, B. & Barquero‐Molina, M. (2007) Geologic and tectonic development of the Caribbean plate Boundary. In: Geologic and Tectonic Development of the Caribbean Plate Boundary in Northern Central America (Ed. by P.Mann ), Geol. Soc. Am. Spec. Paper , 428, 151–179.
    [Google Scholar]
  38. Kesler, S.E. (1970) Nature of ancestral orogenic zone in nuclear Central America. Am. Assoc. Petrol. Geol., 55 (12), 2116–2129.
    [Google Scholar]
  39. Kirby, E. & Whipple, K.X. (2001) Quantifying differential rock‐uplift rates via stream profile analysis. Geology, 29 (5), 415–418.
    [Google Scholar]
  40. Laity, J.E. & Malin, M.C. (1985) Sapping processes and the development of theatre‐headed valley networks on the Colorado Plateau. Geol. Soc. Am. Bull., 96, 203–217.
    [Google Scholar]
  41. Lewis, J.F. & Draper, G. (1990) Geology and tectonic evolution of the northern Caribbean margin. In: The Geology of North America, H: The Caribbean Region (Ed. by G.Dengo & S.F.Case ), Geol. Soc. Am., 77–126.
    [Google Scholar]
  42. Loget, N. & Ven den Driessche, J. (2006) On the origin of the strait of Gibraltar. Sediment. Geol., 188–189, 341–356.
    [Google Scholar]
  43. Losson, B. & Quinif, Y. (2001) La capture de la Moselle. Nouvelles données chronologiques par datation U‐Th sur spéléothèmes. Karstologia, 37, 29–40.
    [Google Scholar]
  44. Lyon‐Caen, H., Barrier, E., Lasserre, C., Franco, A., Arzu, I., Chiquin, L., Chiquin, M., Duquesnoy, T., Flores, O., Galicia, O., Luna, J., Molina, E., Porras, O., Requena, J., Robles, V., Romero, J. & Wolf, R. (2006) Kinematics of the North American‐Caribbean‐Cocos plates in Central America from new GPS measurements across the Polochic‐Motagua fault system. Geophys. Res. Lett., 33, L19309, doi: DOI: 10.1029/2006GL027694.
    [Google Scholar]
  45. Mann, P. & Gordon, M.B. (1996) Tectonic uplift and exhumation of blueschists belts along transpressional strike‐slip fault zones. In: Subduction: Top to Bottom. AGU Geophys. Monogr., 96, 143–154.
    [Google Scholar]
  46. Martens, U., Mattinson, C.G., Bruekcner, H.K. & Liou, J.G. (2009) Coeval deepening of supracrustal sediments and eclogite‐facies metamorphism of sialic crust: record of Campanian collision at the Caribbean-North American plate boundary. Geol. Soc. Am. Abstracts with Programs, 41, 7–352.
    [Google Scholar]
  47. Mather, A.E. (2000) Adjustment of a drainage network to capture induced base‐level change: an example from the Sorbas Basin, SE Spain. Geomorphology, 34, 271–289.
    [Google Scholar]
  48. McBirney, A.R. (1963) Geology of a part of the Central Guatemalan Cordillera. Univ. California Publ. Geol. Sci., 38 (4), 177–242.
    [Google Scholar]
  49. Meneses‐Rocha, J.J. (2001) Tectonic evolution of the Ixtapa Graben, an example of a strike‐slip basin of southeastern Mexico: implications for regional petroleum systems. In: The Western Gulf of Mexico Basin: Tectonics, Sedimentary Basins, and Petroleum Systems (Ed. by C.Bartolini , R.T.Buffler & A.Cantú‐Chapa ), Am. Assoc. Petrol. Geol. Mem., 75, 183–216.
    [Google Scholar]
  50. Oberlander, T.M. (1985) Origin of drainage transverse to structures in orogens. In: Tectonic Geomorphology (Ed. by M.Morisawas & J.T.Hack ), pp. 155–182. Allen & Unwin, Boston.
    [Google Scholar]
  51. Ortega‐Gutiérrez, F., Solari, L.A., Solé, J., Martens, U., Gómez‐Tuena, A., Morán‐Ical, S., Reyes‐Salas, M. & Ortega‐Obregón, C. (2004) Polyphase, high‐temperature eclogite‐facies metamorphism in the Chuacús Complex, Central Guatemala: petrology, geochronology and tectonic implications. Int. Geol. Rev., 46, 445–470.
    [Google Scholar]
  52. Ortega‐Obregón, C., Solari, L., Keppie, J.D., Ortega‐Guttiérez, F., Solé, J. & Morán‐Ical, S. (2008) Middle‐Late Ordovician magmatism and Late Cretaceous collision in the southern maya block, Rabinal‐Salamá area, Central Guatemala. Implications for North America‐Caribbean plate tectonics. GSA Bulletin doi: DOI: 10.1130/B26238.1.
    [Google Scholar]
  53. Pederson, J.L. (2001) Stream piracy revisited: a groundwater sapping solution. Geol. Soc. Am. Today, 11 (9), 4–10.
    [Google Scholar]
  54. Pindell, J.L. & Barrett, S.F. (1990) Geological evolution of the Caribbean region; a plate‐tectonics perspective. In: The Geology of North America, H: The Caribbean Region (Ed. by G.Dengo & S.F.Case ), Geol. Soc. Am., 405–430.
    [Google Scholar]
  55. Replumaz, A., Lacassin, R., Tapponnier, P. & Leloup, P.H. (2001) Large river offsets and Plio‐Quatrenary dextral slip rate bon the Red River fault (Yunnan, China). J. Geophys. Res., 106 (B1), 819–836.
    [Google Scholar]
  56. Retallack, G.J., Bestland, E.A. & Fremd, T.J.(2000)Eocene and Oligocene paleosols of Central Oregon. Geol. Soc. Am. Spec. Paper, 344, 192 pp.
    [Google Scholar]
  57. Rogers, D.R., Kàrason, H. & van der Hilst, R.D. (2002) Epeirogenic uplift above a detached slab in northern Central America. Geology, 30 (11), 1031–1034.
    [Google Scholar]
  58. Roper, P.J. (1978) Stratigraphy of the Chuacús Group on the south side of the Sierra de las Minas range, Guatemala. Geol. Mijn., 57, 309–313.
    [Google Scholar]
  59. Rosenfeld, J.H. (1981). Geology of the western Sierra de Santa Cruz, Guatemala, Central America: an ophiolite sequence. PhD Thesis, State University of New York at Binghamton, 314 pp.
  60. Schlunegger, F., Slinger land, R. & Matter, A. (1998) Crustal thickening and crustal extension as controls on the evolution of the drainage network of the central Swiss Alps between 30 Ma and the present: constraints from the stratigraphy of the North Alpine Foreland basin and the structural evolution of the Alps. Basin Res., 10, 197–212.
    [Google Scholar]
  61. Sigurdsson, H., Kelley, S., Leckie, R.M., Carey, S., Bralower, T. & King, J. (2000) History of circum‐Caribbean explosive volcanism: 40Ar/39Ar dating of tephra layers. In: R.M.Leckie , H.Sigurdsson , G.D.Acton & G.Draper , Proc. ODP, Sci. Results , 165, 299–314.
  62. Stokes, M., Mather, A.E. & Harvey, A.M. (2002) Quantification of river‐capture‐induced base‐level changes and landscape development, Sorbas Basin, southeastern Spain. In: Sediment Flux to Basins: Causes, Controls and Consequences (Ed. by S.J.Jones & L.E.Frostick ), Geol. Soc. Am. Spec. Publ., 191, 23–35.
    [Google Scholar]
  63. Strahler, A.N. (1945) Hypotheses of stream development in the folded Appalachians of Pennsylvania. Geol. Soc. Am. Bull., 56, 45–88.
    [Google Scholar]
  64. Talling, P.J., Stewart, M.D., Stark, C.P., Gupta, S & Vincent, S.J. (1997) Regular spacing of drainage outlets from linear fault blocks. Basin Res., 9, 275–302.
    [Google Scholar]
  65. Termer, F. (1936) Zür geographie der republic Guatemala. Geolog. Gesellschaft. Mitt. Hamburg, 44, 89–275.
    [Google Scholar]
  66. Van den Boom, G. (1972) Petrofazielle Gliederung des metamorphen Gebirges in der Sierra de Chuacus, Guatemala. Beheifte zum Geologischen Jahrbuch, 122, 1–49.
    [Google Scholar]
  67. Van der Beek, P., Champel, B. & Mugnier, J.‐L. (2002a) Control of detachment dip on drainage development in regions of active fault‐propagation folding. Geology, 30 (5), 471–474.
    [Google Scholar]
  68. van der Beek, P.A., Summerfield, M.A., Braun, J., Brown, R.W. & Fleming, A. (2002b) Modeling post‐break‐up landscape development and denudational history across the southeast African (Drakensberg Escarpment) margin. J. Geophys. Res., 107, 2351 doi: DOI: 10.1029/2001JB000744.
    [Google Scholar]
  69. Wallace, R.E. (1968) Notes on stream channels offset by the San Andreas fault, southern Coast Ranges, California. In: Proceedings of Conference on Geologic Problems of the San Andreas Fault System (Ed. by W.R.Dickinson & A.Grantz ), Stanford Univ. Pubs. Geol. Sci., 11, 6–21.
    [Google Scholar]
  70. Walper, J.L. (1960) Geology of Cobán‐Purulha area, Alta Verapaz, Guatemala. Am. Assoc. Petrol. Geol. Bull., 44 (8), 1273–1315.
    [Google Scholar]
  71. Whipple, K.X. & Tucker, G.E. (2002) Implications of sediment‐flux dependent river incision models for landscape evolution. J. Geophys. Res., 107, B2, doi: DOI: 10.1029/2000JB000044.
    [Google Scholar]
  72. Williams, H. & McBirney, A.R. (1969) Volcanic history of Honduras. Geol. Sci., 85, 1–70.
    [Google Scholar]
  73. Wittaker, A., Cowie, P., Attal, M., Tucker, G. & Roberts, G. (2007) Contrasting transient and steady‐state rivers crossing active normal faults: new field observations from Italy. Basin Res., 19, 529–556.
    [Google Scholar]
  74. Ziegler, P.A. & Fraefel, M. (2009) Response of drainage systems to Neogene evolution of the Jura fold‐thrust belt and Upper Rhine Graben. Swiss J. Geosci., 102, 57–75.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2011.00510.x
Loading
/content/journals/10.1111/j.1365-2117.2011.00510.x
Loading

Data & Media loading...

Supplements

Paleosols of Sicaché. Grain size of gravel deposits. Sediment provenance in the paleovalleys of Sicaché (V4) and Chitapol (V5). Sediment provenance in V7 (Chicruz).Ar‐Ar istopic data: step‐heating for samples from ignimbrites pertaining to the Colotenango Beds, V0 (2‐61), Sicaché paleovalley, V5 (7‐71, 7‐72), and Chitapol paleovalley, V4 (7‐141). General characteristics of the paleovalleys. Major element composition of Miocene ignimbrites and derived Miocene soils, obtained by X‐ray fluorescence. Weathering indices in paleosoils developed on top of Ignimbrite 1, V5. Grain size measurements. Clast assortment, paleovalleys V4, V5 and V7. Area occupied by rock source units in the reconstructed paleocatchments of Figures S3 and S4.Ar/Ar isotopic analyses. General characteristics of the paleovalleys. Geochemical analyses of ignimbrites and soils. Grain size characteristics of fluvial deposits. Clast provenance for paleovalleys V4 (Chitapol), V5 (Sicaché) and V7 (Chicruz).Ar/Ar isotopic analyses.Please note: Wiley‐Blackwell is not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.

Supporting info item

Supporting info item

Supporting info item

Supporting info item

Supporting info item

Supporting info item

Supporting info item

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error