1887
Volume 23, Issue 6
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

We describe the tectono‐sedimentary evolution of a Middle Jurassic, rift‐related supra‐detachment basin of the ancient Alpine Tethys margin exposed in the Central Alps (SE Switzerland). Based on pre‐Alpine restoration, we demonstrate that the rift basin developed over a detachment system that is traced over more than 40 km from thinned continental crust to exhumed mantle. The detachment faults are overlain by extensional allochthons consisting of upper crustal rocks and pre‐rift sediments up to several kilometres long and several hundreds of metres thick, compartmentalizing the distal margin into sub‐basins. We mapped and restored one of these sub‐basins, the Samedan Basin. It consists of a ‐shape geometry in map view, which is confined by extensional allochthons and floored by a detachment fault. It can be restored over a minimum distance of 11 km along and about 4 km perpendicular to the basin axis. Its sedimentary infill can be subdivided into basal (initial), intermediate (widening) and top (post‐tectonic) facies tracts. These tracts document (1) formation of the basin initially bounded by high‐angle faults and developing into low‐angle detachment faults, (2) widening of the basin and (3) migration of deformation further outboard. The basal facies tract is made of locally derived, poorly sorted gravity flow deposits that show a progressive change from hangingwall to footwall‐derived lithologies. Upsection the sediments develop into turbidity current deposits that show retrogradation (intermediate facies tract) and starvation of the sedimentary system (post‐tectonic facies tract). On the scale of the distal margin, the syn‐tectonic record documents a thinning‐ and fining‐upward sequence related to the back stepping of the tectonically derived sediment source, progressive starvation of the sedimentary system and migration of deformation resulting in exhumation and progressive delamination of the thinned crust during final rifting. This study provides valuable insights into the tectono‐sedimentary evolution and stratigraphic architecture of a supra‐detachment basin formed over hyper‐extended crust.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2011.00509.x
2011-05-04
2024-03-28
Loading full text...

Full text loading...

References

  1. Aslanian, D., Moulin, M., Olivet, J.L., Unternehr, P., Matias, L., Bache, F., Rabineau, M., Nouze, H., Klingelhoefer, F., Contrucci, I. & Labails, C. (2009) Brazilian and African passive margins of the Central Segment of the South Atlantic Ocean; kinematic constraints. Tectonophysics, 468, 98–112.
    [Google Scholar]
  2. Baumgartner, P.O. (1987) Age and genesis of Tethyan Jurassic radiolarites. Eclogae Geol. Helv., 80, 831–879.
    [Google Scholar]
  3. Bernoulli, D. (1964) Zur Geologie Des Monte Generoso Ein Beitrag zur Kenntnis der südalpinen Sedimente. Beitr. Geol. Karte Schweiz. N.F. 118, Zurich.
  4. Beslier, M.‐O., Royer, J.‐Y., Girardeau, J., Hill, P.J., Boeuf, E., Buchanan, C., Chatin, F., Jacovetti, G., Moreau, A., Munschy, M., Partouche, C., Robert, U. & Thomas, S. (2004) Une large transition continent‐ocean En Pied De Marge Sud‐Ouest Australienne; Premiers Resultats De La Campagne Margau/Md110 [a wide ocean‐continent transition Along the Southwestern Australian margin; first results of the Margau/Md110 Cru]. Bull. Soc. Géol. France, 175, 629–641.
    [Google Scholar]
  5. Bill, M., O'Dogherty, L., Guex, J., Baumgartner, P.O. & Masson, H. (2001) Radiolarite ages in Alpine‐Mediterranean Ophiolites; constraints on the oceanic spreading and the Tethys‐Atlantic connection. Geol. Soc. Am. Bull., 113, 129–143.
    [Google Scholar]
  6. Blackman, D.K. (2002) Geology of the Atlantis Massif (Mid‐Atlantic Ridge, 30 Degrees N); implications for the evolution of an Ultramafic oceanic core complex. Mar. Geophys. Res., 23, 443–469.
    [Google Scholar]
  7. Boillot, G., Grimaud, D., Maufret, A., Mougenot, D., Kornprobst, J., Mergoil‐Daniel, J. & Torrent, G. (1980) Ocean continent boundary off the Iberian margin: a Serpentinite Diapir West of the Galicia bank. Earth Planet. Sci. Lett., 48, 23–34.
    [Google Scholar]
  8. Boillot, G., Recq, M., Winterer, E.L., Meyer, A.W., Applegate, J., Baltuck, M., Bergen, J.A., Comas, M.C., Davies, T.A., Dunham, K., Evans, C.A., Girardeau, J., Golberg, G., Haggerty, J., Jansa, L.F., Johnson, J.A., Kasahara, J., Loreau, J.P., Luna‐Sierra, E., Moullade, M., Ogg, J., Sarti, M., Thurow, J. & Williamson, M. (1987) Tectonic denudation of the upper mantle along passive margins: a model based on drilling results (ODP leg 103, Western Gallicia Margin, Spain). Tectonophysics, 132, 335–342.
    [Google Scholar]
  9. Contrucci, I., Matias, L., Moulin, M., Geli, L., Klingelhofer, F., Nouze, H., Aslanian, D., Olivet, J.‐L., Rehault, J.‐P. & Sibuet, J.‐C. (2004) Deep structure of the West African Continental Margin (Congo, Zaire, Angola), between 5 °S and 8°S, from reflection/refraction seismics and gravity data. Geophys. J. Int., 158, 529–553.
    [Google Scholar]
  10. Cornelius, H.P. (1932) Geologische Karte Der Err‐Julier Gruppe 1:25000. Schweiz geol Komm Spezialkarte 115A, Zurich.
    [Google Scholar]
  11. Cornelius, H.P. (1950) Geologie der Err‐Julier Gruppe: Der Gerbirgsbau. Betr Geol. Karte Schweiz. N.F. 70, Zurich.
  12. Cowan, D.S., Cladouhos, T.T. & Morgan, J.K. (2003) Structural geology and kinematic history of rocks formed along low‐angle normal faults, Death Valley, California. Geol. Soc. Am. Bull., 115, 1230–1248.
    [Google Scholar]
  13. Desmurs, L., Müntener, O. & Manatschal, G. (2002) Onset of magmatic accretion within a magma‐poor rifted margin: a case study from the Platta ocean-continent transition, Eastern Switzerland. Contrib. Mineral. Petrol., 144, 365–382.
    [Google Scholar]
  14. Driscoll, N.W. & Karner, G.D. (1998) Lower crustal extension across the Northern Carnarvon Basin, Australia; evidence for an eastward dipping detachment. J. Geophys. Res., 103, 4975–4991.
    [Google Scholar]
  15. Eberli, G.P. (1988) The evolution of the Southern Continental margin of the Jurassic Tethys Ocean as recorded in the Allgaü formation of the Austroalpine Nappes of Graubunden (Switzerland). Eclogae Geol. Helv., 81, 175–214.
    [Google Scholar]
  16. Escartin, J., Smith, D.K., Cann, J., Schouten, H., Langmuir, C.H. & Escrig, S. (2008) Central role of detachment faults in accretion of slow‐spreading oceanic lithosphere. Nature, 455, 790–794.
    [Google Scholar]
  17. Finger, W. (1978) Die Zone Von Samaden (Unterostalpine Decken, Graubuenden) Und Ihre Jurassischen Brekzien. Mitt. Geol. Inst. ETH Univ. Zuerich, NF224, 1–140.
    [Google Scholar]
  18. Froitzheim, N. & Eberli, G.P. (1990) Extensional detechment faulting in the evolution of a Tethys passive Continental Margin, Eastern Alps, Switzerland. Geol. Soc. Am. Bull., 102, 1297–1308.
    [Google Scholar]
  19. Froitzheim, N. & Manatschal, G. (1996) Kinematics of Jurassic rifting, mantle exhumation, and passive‐margin in the Austroalpine and Penninic Nappes (Eastern Switzerland). Bull. Geol. Soc. Am., 108, 1120–1133.
    [Google Scholar]
  20. Froitzheim, N., Schmid, S.M. & Conti, P. (1994) Repeated change from crustal shortening to Orogen‐Parallel extension in the Austroalpine units of Graübunden. Eclogae Geol. Helv., 2, 559–612.
    [Google Scholar]
  21. Furrer, H., Aemissegger, B., Eberli, G.P., Eichenberger, U., Frank, S., Naef, H. & Trümpy, R. (1985) Field workshop on Triassic and Jurassic sediments in the Eastern Alps of Switzerland. Mitt. Geol. Inst. ETH und Univ. Zürich, NF248, 1–82.
    [Google Scholar]
  22. Gawthorpe, R.L. & Leeder, M.R. (2000) Tectono‐sedimentary evolution of active extensional basins. Basin Res., 12, 195–218.
    [Google Scholar]
  23. Gerard, J. & Bromley, R. (2008) Ichnofacies in clastic sediments: applications to sedimentological core studies. J. Gérard, Madrid.
  24. Handy, M.R. (1996) The transition from passive to active margin tectonics; a case study from the zone of Samedan (Eastern Switzerland). 85, 832–851.
  25. Handy, M.R., Herwegh, M. & Regli, C. (1993) Tektonische Entwicklung Der Westlichen Zone Von Samedan (Oberhalbstein, Graubünden, Schweiz). Eclogae Geol. Helv., 86, 785–817.
    [Google Scholar]
  26. Huismans, R. & Beaumont, C. (2003) Symmetric and asymmetric lithospheric extension: relative effects of frictional-plastic and viscous strain softening. J. Geophys. Res., 108, doi: DOI: 10.1029/2002JB002026.
    [Google Scholar]
  27. Huismans, R.S. & Beaumont, C. (2008) Complex rifted continental margins explained by dynamical models of depth‐dependent lithospheric extension. Geology, 36, 163–166.
    [Google Scholar]
  28. Karner, G.D., Driscoll, N.W. & Barker, D.H.N. (2003) Syn‐rift region subsidence across the West African continental margin; the role of lower Plate Ductile extension. In: Petroleum Systems and Evolving Technologies in African Exploration and Production (Ed. by T.Arthur , D.MacGregor & N.R.Cameron ), Spec. Publ. Geol. Soc. London , 207, 105–129.
    [Google Scholar]
  29. Karson, J.A., Frueh‐Green, G.L., Kelley, D.S., Williams, E.A., Yoerger, D.R. & Jakuba, M. (2006) Detachment shear zone of the Atlantis Massif Core Complex, Mid‐Atlantic Ridge, 30°N. Geochem. Geophys. Geosyst., 6, doi: DOI: 10.1029/2005GC001109.
    [Google Scholar]
  30. Lavier, L. & Manatschal, G. (2006) Mechanism to thin continental lithosphere at magma poor margins. Nature, 440, 324–328.
    [Google Scholar]
  31. Lavier, L.L. & Buck, W.R. (2002) Half Graben versus large‐offset low‐angle normal fault; importance of keeping cool during normal faulting. J. Geophys. Res., 107, DOI: 10.1029/2001JB000513.
    [Google Scholar]
  32. Leeder, M.R. & Gawthorpe, R.L. (1987) Sedimentary models for extensional Tilt‐Block/Half graben basins. In: Continental Extensional Tectonics (Ed. by M.P.Coward , J.F.Dewey & P.L.Hancock ), Spec. Publ. Geol. Soc. London , 28, 139–152.
    [Google Scholar]
  33. Lowe, D.R. (1982) Sediment gravity flows: II. Depositional models with spatial reference to the deposit of high density turbidity currents. J. Sediment. Geol., 52, 279–297.
    [Google Scholar]
  34. Manatschal, G. (1999) Fluid‐ and reaction‐assisted low‐angle normal faulting; evidence from rift‐related brittle fault rocks in the Alps (Err Nappe, Eastern Switzerland). J. Struct. Geol., 21, 777–793.
    [Google Scholar]
  35. Manatschal, G. (2004) New models for evolution of magma‐poor rifted margins based on a review of data and concepts from West Iberia and the Alps. Int. J. Earth, 93, 432–466.
    [Google Scholar]
  36. Manatschal, G. & Müntener, O. (2009) A type sequence across an ancient magma‐poor ocean‐continent transition; the example of the Western Alpine Tethys Ophiolites. Tectonophysics, 473, 4–19.
    [Google Scholar]
  37. Manatschal, G. & Nievergelt, P. (1997) A continent‐ocean transition recorded in the Err and Platta Nappes (Eastern Switzerland). Eclogae Geol. Helv., 90, 3–27.
    [Google Scholar]
  38. Mercolli, I. (1989) The volcanic suite of the Julier Area (Grisons); I, volcanic and tectonic evolution. Schweiz. Mineral. Petrogr. Mitt., 69, 423–433.
    [Google Scholar]
  39. Miller, J.M.G. & John, B.E. (1988) Detached Strata in a tertiary low‐angle normal fault Terrane, Southeastern California; a sedimentary record of unroofing, breaching, and continued slip. Geology, 16, 645–648.
    [Google Scholar]
  40. Miller, M.B. & Pavlis, T.L. (2005) The Black Mountains Turtlebacks; Rosetta Stones of Death Valley tectonics. Earth-Science Rev., 73, 115–138.
    [Google Scholar]
  41. Mohn, G., Manatschal, G., Masini, E. & Müntener, O.(2011)Rift‐related inheritance in orogens: a case study from the Austroalpine nappes in Central Alps (SE-Switzerland, N-Italy). Int.J. Earth Sci., in press.
    [Google Scholar]
  42. Mohn, G., Manatschal, G., Müntener, O., Beltrando, M. & Masini, E. (2010) Unravelling the interaction between tectonic and sedimentary processes during lithospheric thinning in the Alpine Tethys margins. Int. J. Earth Sci., 99, 75–101.
    [Google Scholar]
  43. Montadert, L., Roberts, D.G., De Charpal, O. & Guennoc, P. (1979) Rifting and subsidence of the northern continental margin of the Bay of Biscay. Initial reports of the Deep Sea Drilling Project, Leg 48, Brest, France to Aberdeen, Scotland, 1976, (Scripps Institution of Oceanography; UK distributors IPOD Committee, NERC, Swindon), pp. 1025–1060.
  44. Moulin, M., Aslanian, D., Olivet, J.‐L., Contrucci, I., Matias, L., Geli, L., Klingelhoefer, F., Nouze, H., Rehault, J.‐P. & Unternehr, P. (2005) Geological constraints on the evolution of the Angolan margin based on reflection and refraction seismic Data (Zaiango Project). Geophys. J. Int., 162, 793–810.
    [Google Scholar]
  45. Mutti, E. (1992) Turbidite Sandstones. Agip and Instituto di Geologia Universitàdi Parma, S. Donato Milanese.
    [Google Scholar]
  46. Mutti, E., Tinterri, R., Remacha, E., Mavilla, N., Angella, S. & Fava, L. (1999) An introduction to the analysis of ancient turbidite basins from an outcrop perspective. AAPG Course Note, Tulsa.
    [Google Scholar]
  47. Mutti, E., Bernoulli, D., Ricci Lucchi, F. & Tinterri, R. (2009) Turbidites and turbidity currents from Alpine ‘Flysh’ to the exploration of continental margins. Sedimentology, 56, 267–318.
    [Google Scholar]
  48. Osmundsen, P.T. & Ebbing, J. (2008) Styles of extension Offshore Mid‐Norway and implications for mechanisms of crustal thinning at passive margins. Tectonics, 27, doi: DOI: 10.1029/2007TC002242.
    [Google Scholar]
  49. Péron‐Pinvidic, G. & Manatschal, G. (2009) The final rifting evolution at deep magma‐poor passive margins from Iberia‐Newfoundland; a new point of view. Int. J. Earth Sci., 98, 1581–1597.
    [Google Scholar]
  50. Péron‐Pinvidic, G., Manatschal, G., Minshull, T.A. & Sawyer, D.S. (2007) Tectonosedimentary evolution of the deep Iberia‐Newfoundland Margins; evidence for a complex breakup history. Tectonics, 26, doi: DOI: 10.1029/2006TC001970.
    [Google Scholar]
  51. Peters, T. (2005) Geologischer Atlas Der Schweiz 1:25′000 Blatt 1257 St Moritz. Bundesamt für Wasser und Geologie Bern.
  52. Peters, T. (2007) Geologischer Atlas Der Schweiz 1:25′000, Blatt 1256 Bivio. Bundesamt für Wasser und Geologie.
  53. Ravnas, R. & Steel, R.J. (1998) Architecture of marine rift‐basin successions. AAPG Bull., 82, 110–146.
    [Google Scholar]
  54. Schaltegger, U., Desmurs, L., Manatschal, G., Müntener, O., Meier, M., Frank M & Bernoulli, D. (2002) The transition from rifting to sea‐floor spreading within a magma‐poor rifted margin; field and isotopic constraints. Terra Nova, 14, 156–162.
    [Google Scholar]
  55. Schmid, S.M., Fuegenschuh, B., Kissling, E. & Schuster, R. (2004) Tectonic map and overall architecture of the Alpine Orogen. Eclogae Geol. Helv., 97, 93–117.
    [Google Scholar]
  56. Seilacher, A. (2007) Trace Fossil Analysis. Springer, Berlin.
    [Google Scholar]
  57. Staub, R. (1948) Uber Den Bau Der Gebirge Zwischen Samaden Und Julierpass Und Seine Beziehungen Zum Falknis‐ Und Bernina‐Raum. Beitr. Geol. Karte Scschweiz, 93.
    [Google Scholar]
  58. Unternehr, P., Péron‐Pinvidic, G., Manatschal, G. & Sutra, E. (2010) Hyper‐extended crust in the South Atlantic: in search of a model. Petrol. Geosci., 16, 207–215.
    [Google Scholar]
  59. Weissert, H.J. & Bernoulli, D. (1985) A transform margin in the Mesozoic Tethys; evidence from the Swiss Alps. Geol. Rundsch., 74, 665–679.
    [Google Scholar]
  60. Whitmarsh, R.B. & Wallace, P.J. (2001) The Rift‐to‐Drift Development of the West Iberia Nonvolcanic Continental Margin; a Summary and Review of the Contribution of Ocean Drilling Program Leg 173. Proceedings of the Ocean Drilling Program, Scientific Results, Texas A&M University, Ocean Drilling Program: College Station, TX, USA, pp. 173.
  61. Wilson, R.C.L., Manatschal, G. & Wise, S. (2001) Rifting along non‐volcanic passive margins; stratigraphic and seismic evidence from the Mesozoic successions of the Alps and Western Iberia. In: Non‐Volcanic Rifting of Continental Margins; a Comparison of Evidence from Land and Sea (Ed. by R.C.L.Wilson ), Spec. Publ. Geol. Soc. London , 187, 429–452.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2011.00509.x
Loading
/content/journals/10.1111/j.1365-2117.2011.00509.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error