1887
Volume 23, Issue 6
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

We present a new lithostratigraphy and chronology for the Miocene on central Crete, in the Aegean forearc. Continuous sedimentation started at ∼10.8 Ma in the E–W trending fluvio‐lacustrine Viannos Basin, formed on the hangingwall of the Cretan detachment, which separates high‐pressure (HP) metamorphic rocks from very low‐grade rocks in its hangingwall. Olistostromes including olistoliths deposited shortly before the Viannos Basin submerged into the marine Skinias Basin between 10.4 and 10.3 Ma testifies to significant nearby uplift. Uplift of the Skinias Basin between 9.7 and 9.6 Ma, followed by fragmentation along N–S and E–W striking normal faults, marks the onset of E–W arc‐parallel stretching superimposed on N–S regional Aegean extension. This process continued between 9.6 and 7.36 Ma, as manifested by tilting and subsidence of fault blocks with subsidence events centred at 9.6, 8.8, and 8.2 Ma. Wholesale subsidence of Crete occurred from 7.36 Ma until ∼5 Ma, followed by Pliocene uplift and emergence. Subsidence of the Viannos Basin from 10.8 to 10.4 Ma was governed by motion along the Cretan detachment. Regional uplift at ∼10.4 Ma, followed by the first reworking of HP rocks (10.4–10.3 Ma) is related to the opening and subsequent isostatic uplift of extensional windows exposing HP rocks. Activity of the Cretan detachment ceased sometime between formation of extensional windows around 10.4 Ma, and high‐angle normal faulting cross‐cutting the detachment at 9.6 Ma. The bulk of exhumation of the Cretan HP‐LT metamorphic rocks occurred between 24 and 12 Ma, before basin subsidence, and was associated with extreme thinning of the hangingwall (by factor ∼10), in line with earlier inferences that the Cretan detachment can only explain a minor part of total exhumation. Previously proposed models of buyoant rise of the Cretan HP rocks along the subducting African slab provide an explanation for extension without basin subsidence.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2011.00507.x
2011-04-26
2024-04-20
Loading full text...

Full text loading...

References

  1. Aguilar, J.‐P., Berggren, W.A., Aubry, M.‐P., Kent, D.V., Clauzon, G., Benammi, M. & Michaux, J. (2004) Mid‐Neogene Mediterranean marine‐continental correlations: an alternative interpretation. Palaeogeogr. Palaeoclimatol. Palaeoecol., 204, 165–186.
    [Google Scholar]
  2. Angelier, J. (1975) Sur l'analyse des phases superposées de la tectonique cassante: la néotectonique et les failles du massif de l'Ida (Crète, Grèce). Ann. Soc. Geol. Nord, XCV, 183–200.
    [Google Scholar]
  3. Beaumont, C., Jamieson, R.A., Butler, J.P. & Warren, C.J. (2009) Crustal structure: a key constraint on the mechanism of ultra-high-pressure rock exhumation. Earth Planet. Sci. Lett., 287, 116–129.
    [Google Scholar]
  4. Bonneau, M. (1984) Correlation of the Hellenic Nappes in the South‐East Aegean and their tectonic reconstruction. In: The Geological Evolution of the Eastern Mediterranean (Ed. by J.E.Dixon & A.H.F.Robertson ), Geol. Soc., Lond., Spec. Publ., 17, 517–527.
    [Google Scholar]
  5. Bornovas, I. & Rontogianni‐Tsiabaou, T. (1983) Geological Map of Greece. Institute of Geology and Mineral Exploration, Athens.
    [Google Scholar]
  6. Brachert, T.C., Reuter, M., Felis, T., Kroeger, K.F., Lohmann, G., Micheels, A. & Fassoulas, C. (2006) Porites Corals from Crete (Greece) open a window into late Miocene (10 Ma) seasonal and interannual climate variability. Earth Planet. Sci. Lett., 245, 81–94.
    [Google Scholar]
  7. Brix, M.R., Stöckhert, M., Seidel, E., Theye, T., Thomson, S.A. & Küster, M. (2002) Thermobarometric data from a fossil zircon partial annealing zone in high pressure‐low temperature rocks of eastern and central Crete, Greece. Tectonophysics, 349, 309–326.
    [Google Scholar]
  8. Burchfiel, B.C. & Royden, L.H. (1985) North‐south extension within the convergent Himalayan region. Geology, 13, 679–682.
    [Google Scholar]
  9. Chatzaras, V., Xypolias, P. & Doutsos, T. (2006) Exhumation of high‐pressure rocks under continuous compression: a working hypothesis for the southern Hellenides (Central Crete, Greece). Geol. Mag., 143, 859–876.
    [Google Scholar]
  10. de Bruin, H., Daams, R., Daxner‐Höck, G., Fahlbusch, V., Ginsburg, L., Mein, P., Morales, J., Heinzmann, E., Mayhew, D.F., Van der Meulen, A.J., Schmidt‐Kittler, N. & Telles Antunes, M. (1992) Report of the RCMNS Working Group on fossil mammals, Reisensburg 1990. Newslett. Stratigr., 26, 65–118.
    [Google Scholar]
  11. de Bruin, H. & Meulenkamp, J.E. (1972) Late Miocene rodents from the Pandanassa formation (Prov. Rethymnon), Crete, Greece. Proc. van de Koninklijke Nederlandse Acad. van Wetenschappen, B 75, 54–60.
    [Google Scholar]
  12. de Bruin, H., Sondaar, P.Y. & Zachariasse, W.J. (1971) Mammalia and foraminifera from the Neogene of Kastellios Hill (Crete), a correlation of continental and marine biozones. Proc. van de Koninklijke Nederlandse Acad. van Wetenschappen, B 74, 1–22.
    [Google Scholar]
  13. de Bruin, H. & Zachariasse, W.J. (1979) The correlation of marine and continental biozones of Kastellios Hill reconsidered. Ann. Geol. Pays Hellenique, H.S. 1, 219–226.
    [Google Scholar]
  14. Delrieu, B. (1990) Evolution tectono‐sédimentaire du Malevisi et du secteur d'Ano Moulia au Miocene Supérieur (Bassin d'Héraklion, Crète Centrale, Grèce). Mém. Géol. l'IGAL, 42, 1–314.
    [Google Scholar]
  15. Delrieu, B., Saint‐Martin, J.P., Koskeridou, E., Chaix, C., Moissette, P., Tsagaris, S., Perret, A. & Audoult, P.B. (2004). Late Tortonian eustatic rise in the eastern Mediterranean: recording from an upward backstepping geometry of coral reefs in Central Crete. 5th International Symposium on Eastern Mediterranean Geology, Thessaloniki, Greece.
  16. Delrieu, B., Saint‐Martin, J.P. & Merle, D. (1991) Un modèle d'évolution tectonosédimentaire dans le domaine Sud‐Égéen au Miocène Supérieur: L'áccident d'Aghia Varvara (Crète Central, Grèce). C. R. Acad. Sci. Paris, 313, 1043–1049.
    [Google Scholar]
  17. Drooger, C.W. & Meulenkamp, J.E. (1973) Stratigraphic contributions to geodynamics in the Mediterranean Area: Crete as a case history. Bull. Geol. Soc. Greece, 10, 193–200.
    [Google Scholar]
  18. Duermeijer, C.E., Krijgsman, W., Langereis, C.G. & ten Veen, J.H. (1998) Post early Messinian counter‐clockwise rotations on Crete: implications for the Late Miocene to Recent kinematics of the southern Hellenic arc. Tectonophysics, 298, 77–89.
    [Google Scholar]
  19. Faccenna, C., Jolivet, L., Piromallo, C. & Morelli, A. (2003) Subduction and the depth of convection of the Mediterranean mantle. J. Geophys. Res., 108, 2099.
    [Google Scholar]
  20. Fassoulas, C. (1999) The structural evolution of Central Crete: insight into the tectonic evolution of the South Aegean (Greece). J. Geodynam., 27, 23–43.
    [Google Scholar]
  21. Fassoulas, C. (2001) The tectonic development of a Neogene basin at the leading edge of the active European margin: the Heraklion basin, Crete, Greece. J. Geodynam., 31, 49–70.
    [Google Scholar]
  22. Fassoulas, C., Kilias, A. & Mountrakis, D. (1994) Postnappe stacking extension and exhumation of High‐Pressure/Low‐Temperature rocks in the island of Crete, Greece. Tectonics, 13, 127–138.
    [Google Scholar]
  23. Flecker, R., de Villiers, S. & Ellam, R.M. (2002) Modelling the effect of evaporation on the salinity‐87Sr/86Sr relationship in modern and ancient marginal‐marine systems: the Mediterranean Salinity Crisis. Earth Planet. Sci. Lett., 203, 221–233.
    [Google Scholar]
  24. Forster, M.A. & Lister, G.S. (2009) Core‐complex‐related extension of the Aegean lithosphere initiated at the Eocene‐Oligocene transition. J. Geophys. Res., 114, B02401, doi: DOI: 10.1029/2007JB005382.
    [Google Scholar]
  25. Fortuin, A.R. (1977) Stratigraphy and sedimentary history of the Neogene deposits in the Ierapetra region, Eastern Crete. GUA Pap. Geol., 8, 1–164.
    [Google Scholar]
  26. Fortuin, A.R. (1978) Late Cenozoic history of eastern Crete and implications for the geology and geodynamics of the southern Aegean region. Geol. Mijnbouw, 57, 451–464.
    [Google Scholar]
  27. Fortuin, A.R. & Peters, J.M. (1984) The Prina Complex in Eastern Crete and its relationship to possible Miocene strike‐slip tectonics. J. Struct. Geol., 6, 459–476.
    [Google Scholar]
  28. Friedmann, S.J. & Burbank, D.W. (1995) Rift basins and supradetachment basins: intracontinental extensional end-members. Basin Res., 7, 109–127.
    [Google Scholar]
  29. Garces, M., Augusti, J., Cabrera, L. & Pares, J.M. (1996) Magnetostratigraphy of the Vallesian (late Miocene) in the Valles‐Penedes Basin (NE Spain). Earth Planet. Sci. Lett., 142, 381–396.
    [Google Scholar]
  30. Gautier, P., Brun, J.‐P. & Jolivet, L. (1993) Structure and kinematics of upper Cenozoic extensional detachment on Naxos and Paros. Tectonics, 12, 1180–1194.
    [Google Scholar]
  31. Gautier, P., Brun, J.‐P., Moriceau, R., Sokoutis, D., Martinod, J. & Jolivet, L. (1999) Timing, kinematics and cause of Aegean extension: a scenario based on a comparison with simple analogue experiments. Tectonophysics, 315, 31–72.
    [Google Scholar]
  32. Hageman, J. (1979) Benthic foraminiferal assemblages from Plio‐Pleistocene open bay to lagoonal sediments of the western Peloponnesus (Greece). Utrecht Micropaleontol. Bull., 20, 1–171.
    [Google Scholar]
  33. Hilgen, F.J., Abdul Aziz, H., Krijgsman, W., Raffi, I. & Turco, E. (2003) Integrated stratigraphy and astronomical tuning of the Serravallian and lower Tortonian at Monte Dei Corvi (Middle‐Upper Miocene, Northern Italy). Palaeogeogr. Palaeoclimatol. Palaeoecol., 199, 229–264.
    [Google Scholar]
  34. Hilgen, F.J., Krijgsman, W., Langereis, C.G., Lourens, L.J., Santarelli, A. & Zachariasse, W.J. (1995) Extending the astronomical (polarity) time scale into the Miocene. Earth Planet. Sci. Lett., 136, 495–510.
    [Google Scholar]
  35. Hilgen, F.J., Krijgsman, W., Raffi, I., Turco, E. & Zachariasse, W.J. (2000) Integrated stratigraphy and astronomical calibration of the Serravallian/Tortonian boundary section at Monte Gibliscemi (Sicily, Italy). Mar. Micropaleontol., 38, 181–211.
    [Google Scholar]
  36. Hilgen, F.J., Krijgsman, W. & Wijbrans, J.R. (1997) Direct comparison of astronomical and 40Ar/39Ar ages of ash beds: potential implications for the age of mineral dating standards. Geophys. Res. Lett., 24, 2043–2046.
    [Google Scholar]
  37. Hüsing, S.K., Hilgen, F.J., Adbul Aziz, H. & Krijgsman, W. (2007) Completing the Neogene geological timescale between 8.5 and 12.5 Ma. Earth Planet. Sci. Lett., 253, 340–358.
    [Google Scholar]
  38. IGME.
    IGME. (1989) Geological Map of Greece, Sheet Mochos. Institute of Geology and Mineral Exploration (IGME), Athens.
    [Google Scholar]
  39. IGME.
    IGME. (1994) Geological Map of Greece, Sheet Epano Archanae. Institute of Geology and Mineral Exploration (IGME), Athens.
    [Google Scholar]
  40. Jacobshagen, V. (1986) Geologie Von Griechenland. Borntraeger, Berlin‐Stuttgart, 279pp.
    [Google Scholar]
  41. Jolivet, L. (2001) A comparison of geodetic and finite strain pattern in the Aegean, geodynamic implications. Earth Planet. Sci. Lett., 187, 95–104.
    [Google Scholar]
  42. Jolivet, L. & Brun, J.P. (2010) Cenozoic geodynamic evolution of the Aegean. Int. J. Earth Sci., 99, 109–138.
    [Google Scholar]
  43. Jolivet, L., Facenna, C., Goffé, B., Burov, E. & Agard, P. (2003) Subduction tectonics and exhumation of high‐pressure metamorphic rocks in the Mediterranean orogen. Am. J. Sci., 303, 353–409.
    [Google Scholar]
  44. Jolivet, L., Goffé, B., Monié, P., Truffert‐Luxey, C., Patriat, M. & Bonneau, M. (1996) Miocene detachment on Crete and exhumation P‐T‐t paths of high‐pressure metamorphic rocks. Tectonics, 15, 1129–1153.
    [Google Scholar]
  45. Jolivet, L., Trotet, F., Monié, P., Vidal, O., Goffé, B., Labrousse, L., Agard, P. & Ghorbal, B. (2010) Along‐strike variations of P‐T conditions in accretionary wedges and syn‐orogenic extension, the HP‐LT phyllite‐quartzite Nappe in Crete and the Peloponnese. Tectonophysics, 480, 133–148.
    [Google Scholar]
  46. Kilias, A., Fassoulas, C. & Mountrakis, D. (1994) Tertiary extension of continental crust and uplift of Psiloritis metamorphic core complex in the central part of the Hellenic Arc (Crete, Greece). Geol. Rundsch., 83, 417–430.
    [Google Scholar]
  47. Klein, T., Reichhardt, H., Klinger, L., Grigull, S., Wostal, G., Kowalczyk, G. & Zulauf, G. (2008) Reverse slip along the contact Phyllite‐Quartzite Unit/Tripolitza Unit in eastern Crete: implications for the geodynamic evolution of the External Hellenides. Z. Deutsc. Geselschaft Geowissenschaften, 159, 375–398.
    [Google Scholar]
  48. Köhler, C., Heslop, D., Dekkers, M.J., Krijgsman, W., van Hinsbergen, D.J.J. & von Dobeneck, T. (2008) Fuzzy C‐means cluster analysis on a late Miocene multiproxy data set of the eastern Mediterranean: constrains the disappearance of Crete as a sediment source. Geochem. Geophys. Geosyst., 9, Q12018, doi: DOI: 12010.11029/12008GC002127.
    [Google Scholar]
  49. Köhler, C., Krijgsman, W., van Hinsbergen, D.J.J., Heslop, D. & Dupont‐Nivet, G. (2010) Concurrent tectonic and climatic changes recorded in upper Tortonian sediments from the Eastern Mediterranean. Terra Nova, 22, 52–63.
    [Google Scholar]
  50. Kopp, K.O. & Richter, D. (1983) Synorogenetische Schuttbildungen und die Eigenstaendigkeit der Phyllit‐Gruppe auf Kreta. Neues Jahrbuch Geol. Palaeontol. Monatsheften, 165, 228–253.
    [Google Scholar]
  51. Krijgsman, W., Garcés, M., Langereis, C.G., Daams, R., Van Dam, J., van der Meulen, A.J., Agustí, J. & Cabrera, L. (1996) A new chronology for the middle to late Miocene continental record in Spain. Earth Planet. Sci. Lett., 142, 367–380.
    [Google Scholar]
  52. Krijgsman, W., Hilgen, F.J., Langereis, C.G., Santarelli, A. & Zachariasse, W.J. (1995) Late Miocene magnetostratigraphy, biostratigraphy and cyclostratigraphy in the Mediterranean. Earth Planet. Sci. Lett., 136, 475–494.
    [Google Scholar]
  53. Krijgsman, W., Hilgen, F.J., Langereis, C.G. & Zachariasse, W.J. (1994) The age of the Tortonian/Messinian boundary. Earth Planet. Sci. Lett., 121, 533–547.
    [Google Scholar]
  54. Le Pichon, X., Angelier, J. & Sibuet, J.‐C. (1982) Plate boundaries and extensional tectonics. Tectonophysics, 81, 239–256.
    [Google Scholar]
  55. Lister, G.S., Banga, G. & Feenstra, A. (1984) Metamorphic core complexes of cordilleran type in the Cyclades. Aegean Sea, Greece. Geology, 12, 221–225.
    [Google Scholar]
  56. Long, S.P. & McQuarrie, N. (2010) Placing limits on channel flow: insights from the Bhutan Himalaya. Earth Planet. Sci. Lett., 290, 375–390.
    [Google Scholar]
  57. Lourens, L.J., Hilgen, F.J., Laskar, J., Shackleton, N.J. & Wilson, D. (2004) Chapter 21: the Neogene period. In: A Geologic Time Scale 2004 (Ed. by F.M.Gradstein , J.G.Ogg & A.G.Smith ), pp. 409–440. Cambridge University Press, Cambridge.
    [Google Scholar]
  58. Marsellos, A.E. & Kidd, W.S.F. (2008) Extension and exhumation of the Hellenic forearc ridge in Kythera. J. Geol., 116, 640–651.
    [Google Scholar]
  59. Marsellos, A.E., Kidd, W.S.F. & Garver, J.I. (2010) Extension and exhumation of the HP‐LT rocks in the Hellenic forearc ridge. Am. J. Sci., 310, 1–36.
    [Google Scholar]
  60. McKenzie, D. (1978) Some remarks on the development of sedimentary basins. Earth Planet. Sci. Lett., 40, 25–32.
    [Google Scholar]
  61. Mertz‐Krauss, R., Brachert, T.C., Galer, S.J.G., Stoll, B. & Jochum, K. (2007) Seasonal element and Sr isotope ratio variations in late Miocene corals from Crete, eastern Mediterranean. AGU, Fall Meeting 2007, PP31D‐0657.
  62. Mertz‐Krauss, R., Brachert, T.C. & Reuter, M. (2008) Tarbellastraea (Scleractinia): a new stable isotope archive for late Miocene paleoenvironments in the Mediterranean. Palaeogeogr. Palaeoclimatol. Palaeoecol., 257, 294–307.
    [Google Scholar]
  63. Meulenkamp, J.E. (1969) Stratigraphy of Neogene deposits in the Rethymnon province, Crete, with special reference to the phylogeny of uniserial Uvigerina from the Mediterranean region. Utrecht Micropaleontol. Bull., 2, 168.
    [Google Scholar]
  64. Meulenkamp, J.E., Dermitzakis, M., Georgiadou‐Nikeoulia, E., Jonkers, H.A. & Boger, H. (1979) Field guide to the Neogene of Crete. In: Publications of the Department of Geology and Paleontology, University of Athens. (Ed. by N. Symeonidis, D. Papanikolaou & M. Dermitzakis), Series A,32, 1–32.
  65. Meulenkamp, J.E., Van der Zwaan, G.J. & Van Wamel, W.A. (1994) On late Miocene to Recent vertical motions in the Cretan segment of the Hellenic arc. Tectonophysics, 234, 53–72.
    [Google Scholar]
  66. Meulenkamp, J.E., Wortel, M.J.R., Van Wamel, W.A., Spakman, W. & Hoogerduyn Strating, E. (1988) On the Hellenic subduction zone and the geodynamical evolution of Crete since the late Middle Miocene. Tectonophysics, 146, 203–215.
    [Google Scholar]
  67. Papanikolaou, D. & Vassilakis, E. (2010) Thrust faults and extensional detachment faults in Cretan tectono‐stratigraphy: implications for Middle Miocene extension. Tectonophysics, 488, 233–247.
    [Google Scholar]
  68. Peters, J.M. (1985) Neogene and Quarternary vertical tectonics in the South Hellenic arc and their effect on concurrent sedimentation processes. GUA Pap. Geol., 23, 1–247.
    [Google Scholar]
  69. Postma, G., Hilgen, F.J. & Zachariasse, W.J. (1993a) Precession‐punctuated growth of a late Miocene submarine‐fan lobe on Gavdos (Greece). Terra Nova, 5, 438–444.
    [Google Scholar]
  70. Postma, G., Fortuin, A.R. & Van Wamel, W.A. (1993b) Basin‐fill patterns controlled by tectonics and climate: the Neogen “fore-arc” basins of eastern Crete as a case history. Spec. Publs. Int. Ass. Sediment., 20, 326–335.
    [Google Scholar]
  71. Rahl, J.M., Anderson, K.M., Brandon, M.T. & Fassoulas, C. (2005) Raman spectroscopic carbonaceous material thermometry of low‐grade metamorphic rocks: calibration and application to tectonic exhumation in Crete, Greece. Earth Planet. Sci. Lett., 240, 339–354.
    [Google Scholar]
  72. Ring, U. & Glodny, J. (2010) No need for lithospheric extension for exhuming (U)HP rocks by normal faulting. J. Geol. Soc. Lond., 167, 225–228.
    [Google Scholar]
  73. Ring, U., Glodny, J., Will, T. & Thomson, S.N. (2010) The Hellenic subduction system: high-pressure metamorphism, exhumation, normal faulting, and large-scale extension. Ann. Rev. Earth Planet. Sci., 38, 45–76.
    [Google Scholar]
  74. Ring, U., Layer, P.W. & Reischmann, T. (2001) Miocene high‐pressure metamorphism in the Cyclades and Crete, Aegean Sea, Greece: evidence for large-magnitude displacement on the Cretan detachment. Geology, 29, 395–398.
    [Google Scholar]
  75. Sánchez‐Gómez, M., Avigad, D. & Heimann, A. (2002) Geochronology of clasts in allochtonous Miocene sedimentary sequences on Mykonos and Paros islands: implications for back-arc extension in the Aegean Sea. J. Geol. Soc. Lond., 159, 45–60.
    [Google Scholar]
  76. Searle, M.P. & Godin, L. (2003) The South Tibetan detachment and the Manaslu Leucogranite: a structural reinterpretation and restoration of the Annapurna-Manaslu Himalaya, Nepal. J. Geol., 111, 505–523.
    [Google Scholar]
  77. Seidel, E., Okrush, M., Kreuzer, H., Raschka, H. & Harre, W. (1981) Eo‐Alpine metamorphism in the uppermost unit of the Cretan nappe‐pile – petrology and geochronology – Part 1. The Léndas Area (Asteroussia Mountains). Contrib. Mineral. Petrol., 57, 259–275.
    [Google Scholar]
  78. Seidel, M., Seidel, E. & Stöckhert, B. (2007) Tectono‐sedimentary evolution of Lower to Middle Miocene half‐graben basins related to an extensional detachment fault (Western Crete, Greece). Terra Nova, 19, 39–47.
    [Google Scholar]
  79. Sen, S. & Seyitoğlu, G. (2009) Magnetostratigraphy of Early‐Middle Miocene Deposits from E‐W trending Alasehir and Büyük Menderes Grabens in Western Turkey, and its tectonic implications. In: Collision and Collapse at the Africa‐Arabia‐Eurasia Subduction Zone (Ed. by D.J.J.van Hinsbergen , M.A.Edwards & R.Govers ), Geol. Soc. Lond. Spec. Publ. , 311, 321–342.
    [Google Scholar]
  80. Sen, S., Valet, J.‐P. & Ioakim, C. (1986) Magnetostratigraphy and biostratigraphy of the Neogene deposits of Kastellios Hill (Central Crete, Greece). Palaeogeogr. Palaeoclimatol. Palaeoecol., 53, 321–334.
    [Google Scholar]
  81. Sissingh, W. (1974) The Miocene ostracoda from the Hipparion‐bearing beds of Kastellios Hill. Proc. van de Koninklijke Nederlandse Acad. van Wetenschappen, 77, 119–128.
    [Google Scholar]
  82. ten Veen, J.H. & Kleinspehn, K.L. (2003) Incipient continental collision and plate‐boundary curvature: late Pliocene-Holocene transtensional Hellenic forearc, Crete, Greece. J. Geol. Soc. Lond., 160, 161–181.
    [Google Scholar]
  83. ten Veen, J.H. & Postma, G. (1999a) Neogene tectonics and basin fill patterns in the Hellenic outer‐arc (Crete, Greece). Basin Res., 11, 243–266.
    [Google Scholar]
  84. ten Veen, J.H. & Postma, G. (1999b) Roll‐back controlled vertical movements of outer‐arc basins of the Hellenic subduction zone (Crete, Greece). Basin Res., 11, 223–241.
    [Google Scholar]
  85. Theye, T. & Seidel, E. (1991) Petrology of low‐grade high‐pressure metapelites from the External Hellenides (Crete, Peloponnese). A case study with attention to sodic minerals. European Journal of Mineralogy, 3, 343–366.
    [Google Scholar]
  86. Theye, T., Seidel, E. & Vidal, O. (1992) Carpholite, sudoite and chloritoid in low‐grade high‐pressure metapelites from Crete and the Peloponnese. European Journal of Mineralogy, 4, 487–507.
    [Google Scholar]
  87. Thomson, S.N., Stöckhert, B. & Brix, M.R. (1998) Thermochronology of the high‐pressure metamorphic rocks of Crete, Greece: implications for the speed of tectonic processes. Geology, 26, 259–262.
    [Google Scholar]
  88. Thomson, S.N., Stöckhert, B. & Brix, M.R. (1999) Miocene high‐pressure metamorphic rocks of Crete, Greece: rapid exhumation by buoyant escape. In: Exhumation Processes: Normal Faulting, Ductile Fow and Erosion (Ed. by U.Ring , M.T.Brandon , G.S.Lister & S.D.Willet ), Geol. Soc., Lond., Spec. Publ. , 154, 87–107.
    [Google Scholar]
  89. Tirel, C., Brun, J.‐P. & Burov, E. (2008) Dynamics and structural development of metamorphic core complexes. J. Geophys. Res., 113, B04403, doi: DOI: 04410.01029/02005JB003694.
    [Google Scholar]
  90. Tirel, C., Gautier, P., van Hinsbergen, D.J.J. & Wortel, M.J.R. (2009) Sequential development of metamorphic core complexes: numerical simulations and comparison to the Cyclades, Greece. In: Collision and Collapse at the Africa‐Arabia‐Eurasia Subduction Zone (Ed. by D.J.J.van Hinsbergen , M.A.Edwards & R.Govers ), Geol. Soc., Lond., Spec. Publ. , 311, 257–292.
    [Google Scholar]
  91. Tirel, C., Gueydan, F., Tiberi, C. & Brun, J.‐P. (2004) Aegean crustal thickness inferred from gravity inversion. Geodynamical implications. Earth Planet. Sci. Lett., 228, 267–280.
    [Google Scholar]
  92. Tsagaris, S. (1991) La Néogene Supérieur de la Messara Nord‐Occidentale (Crète, Grèce)‐ Etude stratigraphique, sédimentaire et structurale‐ Essai de reconstruction paleoenvironmentale. Mém.Géol. l'IGAL, 47, 1–262.
  93. Turco, E., Hilgen, F.J., Lourens, L.J., Shackleton, N.J. & Zachariasse, W.J. (2001) Punctuated evolution of global climate cooling during the late Middle to early Late Miocene: high-resolution planktonic foraminiferal and oxygen isotope records from the Mediterranean. Paleoceanography, 16, 405–423.
    [Google Scholar]
  94. van de Weerd, A. (1983) Palynology of some Upper Miocene and Pliocene formations in Greece. Geol. Jahrbuch, Reihe B, 48, 3–63.
    [Google Scholar]
  95. van der Zwaan, G.J., Jorissen, F.J. & De Stigter, H.C. (1990) The depth dependency of planktonic/benthonic foraminiferal ratios: constraints and applications. Mar. Geol., 95, 1–16.
    [Google Scholar]
  96. van Hinsbergen, D.J.J., Hafkenscheid, E., Spakman, W., Meulenkamp, J.E. & Wortel, M.J.R. (2005a) Nappe stacking resulting from subduction of oceanic and continental lithosphere below Greece. Geology, 33, 325–328.
    [Google Scholar]
  97. van Hinsbergen, D.J.J., Kouwenhoven, T.J. & van der Zwaan, G.J. (2005b) Paleobathymetry in the backstripping procedure: correction for oxygenation effects on depth estimates. Palaeogeogr. Palaeoclimatol. Palaeoecol., 221, 245–265.
    [Google Scholar]
  98. van Hinsbergen, D.J.J. & Meulenkamp, J.E. (2006) Neogene supra‐detachment basin development on Crete (Greece) during exhumation of the South Aegean core complex. Basin Res., 18, 103–124.
    [Google Scholar]
  99. van Hinsbergen, D.J.J., Snel, E., Garstman, S.A., Marunteanu, M., Langereis, C.G., Wortel, M.J.R. & Meulenkamp, J.E. (2004) Vertical motions in the Aegean volcanic arc: evidence for rapid subsidence preceding in situ volcanism. Mar. Geol., 209, 329–345.
    [Google Scholar]
  100. van Hinsbergen, D.J.J., Zachariasse, W.J. & Fortuin, A.R. (2008) Comment on ‘Tectono‐sedimentary evolution of Lower to Middle Miocene half‐graben basins related to an extensional detachment fault (Western Crete, Greece)’ by M. Seidel, E. Seidel and B. Stöckhert. Terra Nova, 20, 414–416.
    [Google Scholar]
  101. van Hinsbergen, D.J.J., Zachariasse, W.J., Wortel, M.J.R. & Meulenkamp, J.E. (2005c) Underthrusting and exhumation: a comparison between the external Hellenides and the “hot” Cycladic and “cold” South Aegean core complexes (Greece). Tectonics, 24, TC2011, doi: DOI: 2010.1029/2004TC001692.
    [Google Scholar]
  102. Willmann, R. (1980) Die Neogenen susswassergastropoden von Chersonisos (Kreta). Neues Jahrbuch Geol. Palaeontol. Abh., 159, 273–295.
    [Google Scholar]
  103. Zachariasse, W.J., van Hinsbergen, D.J.J. & Fortuin, A.R. (2008) Mass wasting and uplift on Crete and Karpathos (Greece) during the Early Pliocene related to beginning of South Aegean left‐lateral, strike slip tectonics. Geol. Soc. Am. Bull., 120, 976–993.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2011.00507.x
Loading
/content/journals/10.1111/j.1365-2117.2011.00507.x
Loading

Data & Media loading...

Supplements

. Data file showing details on location, lithology, biostratigraphy and palaeobathymetry of the studied sections and outcrops in central Crete along with their lithostratigraphic and biozonal assignment. Sections and outcrops in this file are arranged from area I to V and from E to W per area.. Description and definition of the planktonic foraminiferal biozones defined in Gibliscemi (Sicily) and Metochia (Gavdos). The biozones are considered to be useful for correlating and dating upper middle to lower upper Miocene sediments in the Mediterranean region.. Location of sections and outcrops shown in Figure 2b plotted on a scanned version of the Tourist Map of Crete 1:100,000 (Harms‐ic‐Verlag, Germany). O=Kourtes; N=Agios Ioannis. (Semi) Quantitative distribution and coiling of selected planktonic foraminiferal taxa in section Gibliscemi (Sicily). This section combines subsections A to F described in Krijgsman . (1995) and Hilgen . (2000). The semiquantitative data for Gibliscemi A, B and C (extending from cycle G ‐3 up to top sapropel of cycle G 85 are based on 125‐595 micron fraction counts of all 620 samples (average sample resolution < 5 kyr) including the data‐set published in Krijgsman . (1995) which was based on only 40% of all samples from Gibliscemi A and B. This semi‐quantitative record is spliced with the published quantitative pattern in the older part of the Gibliscemi sequence, i.e. Gibliscemi E, D and F (Hilgen ., 2000; Turco ., 2001). The spliced record combines (small) and (large) into and stricto and N. 4‐chambered into . We further added percentages of per total neogloboquadrinids (with–10 values indicating samples where neogloboquadrinids are absent). The distribution and coiling pattern of the selected planktonic foraminiferal taxa allows a subdivision of the spliced record into nine planktonic foraminiferal biozones (numbered 1 to 9) and two subzones (numbered 7.1 and 7.2) up to the level of a significant hiatus at the top of the sapropel of cycle G 85 spanning ~200 kyr (Krijgsman et al., 1995).. Semi‐quantitative distribution and coiling of selected planktonic foraminiferal taxa in section Metochia (Gavdos). The data presented here replace the original presence‐absence data in Krijgsman . (1995) and are based on studying the 125‐595 micron fraction of all 560 samples providing a resolution of < 5 kyr. Note that specimens referred to as in Krijgsman . (1995) are re‐labeled (see also discussion in Hilgen ., 2000). Lithology, sample position and cycle numbers are from Krijgsman . (1995) with the mentioning that we extended the original cycle pattern downward with cycles M0 to M‐2. Biozones 6 to 9 and subzones 7.1 and 7.2 defined in Gibliscemi are present in Metochia as well and extended upwards by biozones 10 and 11.. Lithostratigraphic units for the Neogene basin fill in central Crete in this and earlier studies. Units are equally boxed using the base of Pliocene as reference line.. Photobook.. Ages of planktonic foraminiferal bioevents defining 11 biozones (described in Appendix S2) and their position in terms of sample and sedimentary cycle numbers in sections Gibliscemi (Sicily) and Metochia (Gavdos). Ages for defining bioevents in Metochia are derived from retuning of sedimentary cycles (M‐cycles) to the Laskar 2003(1,1) solution by Lourens et al. (2004). Updated ages for bioevents in Gibliscemi A and B are based on retuning G‐cycles to La2003(1,1) by Lourens et al. (2004) and for bioevents in Gibliscemi F‐C by retuning correlative cycles in the Monte dei Corvi section (northern Italy) to La2004(1,1) by Hüsing et al. (2007). Ages in red are used in this paper. Also shown is position of bioevents in terms of sample number (as registered in the Utrecht collections) and sedimentary cycle number. Table also includes identified magnetic chron boundaries in Metochia (Krijgsman et a., 1995) and Monte dei Corvei (Hüsing et al., 2007) together with their position in terms of M‐cycles and correlative G‐cycles (from Hilgen et al., 2003). Updated ages for magnetic chron boundaries in Metochia are from Lourens et al. (2004) and in Monte dei Corvi from Hüsing et al. (2007).[Correction added after online publication 24 August 2011 ‐ in Location 8 in Appendix S1, the sentence ‘a correlation of the lower Kastellios Hill section to Chron 4Ar.2r is the most likely’ was changed to ‘a correlation of the lower Kastellios Hill section to Chron 4Ar.1r is the most likely’]Please note: Wiley‐Blackwell is not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.

Supporting info item

Supporting info item

Supporting info item

Supporting info item

Supporting info item

Supporting info item

Supporting info item

Supporting info item

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error