1887
Volume 10, Issue 4
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

High Resolution (HR) marine seismic acquisition contributes to numerous research fields. The vertical resolution is of metric scale in order to study geological processes at a short time scale or to characterise small objects. 3D seismic imaging allows optimal resolution to be reached whereas 2D images are blurred mainly by side effects. Developed for the oil industry decades ago and tailored to the exploration for hydrocarbon reservoirs, 3D seismic, as applied to higher resolution targets, is more recent. Available technological advances in acquisition have allowed research institutes to develop innovative 3D high‐resolution marine seismic systems tailored to these targets.

The seismic survey carried out in 2009 on the Western High, Sea of Marmara, illustrates the value of HR3D imaging. Since the destructive İzmit earthquake in 1999, an intensive international research effort has demonstrated that the Western High is one of the key structures for assessing the processes of deformation related to the North Anatolian Fault (NAF). The 30‐km2 HR3D survey centred on the main NAF was acquired using a dual streamers ‐ dual source‐array configuration. In spite of the minimal 3D processing sequence that was applied to the data, the fine imaging of the seabed and of the sedimentary stratigraphy and structures is much better than HR2D seismic. Comparison with an autonomous underwater vehicle (AUV) multi‐beam bathymetric survey carried out at the same location enables the limits of the vertical resolution of the seismic data to be assessed. The lateral resolution is between 13.5 and 25 metres at the seabed. The HR3D seismic data highlight the interplay between tectonic processes and stratigraphy. In particular, differential uplift leads to syntectonic deposition and submarine slides. The widespread occurrence of gas in the sedimentary sequence is clearly shown by anomalously high seismic amplitudes. 3D imaging of these high amplitudes enables the identification of the pathways through faults and permeable units that gas takes as it migrates to the seabed.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2012019
2012-06-01
2024-04-19
Loading full text...

Full text loading...

References

  1. ArcherS., GikasV., PinelC., RidyardD. and CrossP.1999. Spatially and temporally correlated navigation errors: how do they manifest themselves in seismic data?First Break17, 355–362.
    [Google Scholar]
  2. ArmijoR., MeyerB., HubertA. and BarkaA.1999. Westward propagation of the North Anatolian fault into the northern Aegean: Timing and kinematics. Geology27, 267–270.
    [Google Scholar]
  3. BangsN.L.B., HornbachM.J. and BerndtC.2011. The mechanics of intermittent methane venting at South Hydrate Ridge inferred from 4D seismic surveying. Earth Planetary Science Letters310, 105–112.
    [Google Scholar]
  4. BarkaA.1999. The 17 August 1999 İzmit earthquake. Science285, 1858–1859.
    [Google Scholar]
  5. BernéS., RabineauM., FloresJ.A. and SierroF.J.2004. The Impact of Quaternary Global Changes on Strata Formation: Exploration of the Shelf Edge in the Northwest Mediterranean Sea. Oceanography17(4), 92–103.
    [Google Scholar]
  6. BourryC., ChazallonB., CharlouJ.L., DonvalJ.P., RuffineL., HenryP., GéliL., ÇağatayM.N., İnanS. and MoreauM.2009. Free gas and gas hydrates from the Sea of Marmara, Turkey: Chemical and structural characterization. Chemical Geology264, 197–206.
    [Google Scholar]
  7. CarlsonD., LongA., SöllnerW., TabtiH., TenghamnR. and LundeN.2007. Increased resolution and penetration from a towed dual‐sensor streamer. First Break25, 71–77.
    [Google Scholar]
  8. CartwrightJ. and HuuseM.2005. 3D seismic technology: the geological ‘Hubble’. Basin Research17, 1–20.
    [Google Scholar]
  9. ChenJ. and SchusterG.T.1999. Resolution limits of migrated images. Geophysics64, 1046–1053.
    [Google Scholar]
  10. CrutchleyG.J., BerndtC., KlaeschenD. and MassonD.G.2011. Insights into active deformation in the Gulf of Cadiz from new 3D seismic and high‐resolution bathymetry data. Geochemistry Geophysics Geosystems12(7), 1–20.
    [Google Scholar]
  11. DixC.H.1955. Seismic velocities from surface measurements. Geophysics20, 68–86.
    [Google Scholar]
  12. FrenchW.S.1974. Two‐dimensional and three‐dimensional migration of model‐experiment reflection profiles. Geophysics39, 265–277.
    [Google Scholar]
  13. GéliL., HenryP., ZitterT., DupréS., TryonM., ÇağatayM.N., Mercier De LepinayB., Le PichonX., ŞengörA.M.C., GörürN., NatalinB., UçarkuğG., ÖzerenS., VolkerD., GasperiniL., BurnardP., BourlangeS. and the Marnaut Scientific Party. 2008. Gas emissions and active tectonics within the submerged section of the North Anatolian Fault zone in the Sea of Marmara. Earth and Planetary Science Letters274, 34–39.
    [Google Scholar]
  14. GesbertS.2002. From acquisition footprints to true amplitude. Geophysics67, 830–839.
    [Google Scholar]
  15. GrallC., HenryP., TezcanD., Mercier de LepinayB., BécelA., GéliL., RudkiewiczJ.L., ZitterT. and HarmegniesF.2012. Heat flow in the sea of Marmara Central Basin: Possible implications for the tectonic evolution of the North Anatolian fault. Geology40, 3–6.
    [Google Scholar]
  16. GutowskiM., BullJ.M., DixJ.K., HenstockT.J., HogarthP., HillerT., LeightonT.G. and WhiteP.R.2008. Three‐dimensional high‐resolution acoustic imaging of the sub‐seabed. Applied Acoustics69, 412–421.
    [Google Scholar]
  17. HenryP. and the Marnaut Scientific Party. 2007. Cruise Report, Marnaut Expedition, 85 pp.
  18. HustoftS., MienertJ., BünzS. and NouzéH.2007. High‐resolution 3D‐seismic data indicate focused fluid migration pathways above polygonal fault systems of the mid‐Norwegian margin. Marine Geology245, 89–106.
    [Google Scholar]
  19. LaigleM., BécelA., de VoogdB., HirnA., TaymazT., ÖzalaybeyS. and members of the SEISMARMARA Leg1 Team. 2008. A First deep seismic survey in the Sea of Marmara: Deep basins and whole crust architecture and evolution. Earth and Planetary Science Letters270, 168–179.
    [Google Scholar]
  20. Le PichonX., ŞengörA.M.C., DemirbağE., RanginC., İmrenC., ArmijoR., GörürN., ÇağatayN., Mercier de LépinayB., MeyerB., SaatçilarR. and TokB.2001. The active Main Marmara Fault. Earth and Planetary Science Letters192, 595–616.
    [Google Scholar]
  21. LongA. and BuchanI.2004. Seismic frequency bandwidth constraints in deepwater survey locations. First Break22, 55–60.
    [Google Scholar]
  22. MacKayS., FriedJ. and CarvillC.2003. Water‐column changes pose seismic challenges. Offshore63, 114–116.
    [Google Scholar]
  23. MahieuxG., ProustJ.N., TessierB. and DeBatistM.1998. Comparison between high‐resolution seismic and sequence stratigraphic approaches applied to the upper Jurassic deposits of the Dover Strait area (Northern France). Marine and Petroleum Geology15, 329–342.
    [Google Scholar]
  24. MarssetB.2001. EC–MAST3 project Very High Resolution marine 3D seismic method for detailed site investigation. Final technical report, contract MAS3‐CT97‐0121.
    [Google Scholar]
  25. MarssetT., MarssetB., ThomasY. and DidaillerS.2002. Very High Resolution 3D seismic: a new imaging tool for sub‐bottom profiling. Comptes Rendus Geosciences334, 403–408.
    [Google Scholar]
  26. MarssetT., MarssetB., ThomasY., CattaneoA., ThereauE., TrincardiF. and CochonatP.2004. Analysis of Holocene sedimentary features on the Adriatic shelf from 3D very high‐resolution seismic data (Triad survey). Marine Geology213, 73–89.
    [Google Scholar]
  27. MeunierJ., ThomasY. and MarssetB.2004. New tools for Ocean Survey: The Challenge of High Resolution. Sea Technology45(4), 11–15.
    [Google Scholar]
  28. MissiaenT.2005. VHR 3D marine seismics for shallow water investigations: some practical guidelines. Marine Geophysical Researches26, 145–155.
    [Google Scholar]
  29. MutterJ.C., CarbotteS., NedimovicM., CanalesJ.P. and CartonH.2009. Seismic Imaging in Three Dimensions on the East Pacific Rise. Eos Trans. AGU90, 374.
    [Google Scholar]
  30. MüllerC., WoelzS., ErsoyY., BoyceJ., JokischT., WendtG. and RabbelW.2009. Ultra‐high‐resolution marine 2D‐3D seismic investigation of the Liman Tepe/Karantina Island archaeological site (Urla/Turkey). Journal of Applied Geophysics68, 124–134.
    [Google Scholar]
  31. NouzéH., ContrucciI., FoucherJ.P., MarssetB., ThomasY., ThereauE., NormandA., Le DrezenE., DidaillerS., RegnaultJ.P., Le ConteS., GuidartS., LekensW., DeanS. and ThrooA.2004. First results of a geophysical survey on the northern flank of the Storegga slides (Norway). Comptes Rendus Geoscience336, 1181–1189.
    [Google Scholar]
  32. ParkeJ.R., MinshullT.A., AndersonG., WhiteR.S., McKenzieD., KuscuI., BullJ.M., GörürN. and ŞengörA.M.C.1999. Active faults in the Sea of Marmara, western Turkey, imaged by seismic reflection profiles. Terra Nova11, 223–227.
    [Google Scholar]
  33. Perez‐GarciaC., BerndtC., KlaeschenD., MienertJ., HaffertL., DepreiterD. and HaeckelM.2011. Linked halokinesis and mud volcanism at the Mercator mud volcano, Gulf of Cadiz. Journal of Geophysical Research116, B05101, 17 pp.
    [Google Scholar]
  34. PetersenC.J., BünzS., HustoftS., MienertJ. and KlaeschenD.2010. High‐resolution P‐Cable 3D seismic imaging of gas chimney structures in gas hydrated sediments of an Artic sediment drift. Marine and Petroleum Geology27, 1981–1994.
    [Google Scholar]
  35. PlankeS., MienertJ., BerndtC. and ÅsheimS., 2004. “Ny metode for innsamling av høyoppløselig 3D seismikk”. Geo7(6), 24–25.
    [Google Scholar]
  36. Plaza‐Faverolaॅ., BünzS. and MienertJ.2011. Repeated fluid expulsion through sub‐seabed chimneys offshore Norway in response to glacial cycles. Earth and Planetary Science Letters305, 297–308.
    [Google Scholar]
  37. PletsR.M.K., DixJ.K., AdamsJ.R., BullJ.M., HenstockT.J., GutowskiM. and BestA.I.2009. The use of a high‐resolution 3D Chirp sub‐bottom profiler for the reconstruction of the shallow water archaeological site of the Grace Dieu (1439), River Hamble, UK. Journal of Archaeological Science36, 408–418.
    [Google Scholar]
  38. ScheidhauerM., MarillierF. and DupuyD.2005. Development of a system for 3D high‐resolution seismic reflection profiling on lakes. Marine Geophysical Researches26, 183–195.
    [Google Scholar]
  39. ŞengörA.M.C., GörürN. and ŞaroğluF.1985. Strike‐slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In: Strike‐slip deformation, basin formation, and sedimentation (eds BiddleK.D. and Christie‐BlickN. ), 227–264. Spec. Publ. SEPM27.
    [Google Scholar]
  40. SheriffR.E.1980. Nomogram for Fresnel‐zone calculation. Geophysics45, 968–972.
    [Google Scholar]
  41. SheriffR.E.1991. Encyclopedic dictionary of applied geophysics: Society of Exploration Geophysicists, 3rd edition.
  42. SorlienC.C., AkhunS.D., SeeberL., StecklerM.S., ShillingtonD.J., KurtH., ÇifçiG., PoyrazD.T., GürçayS., DondururD., İmrenC, PerinçekE., OkayS., KüçükH.M., DieboldJ.B.2012. Uniform basin growth over the last 500 ka, North Anatolian Fault, Marmara Sea, Turkey. Tectonophysics, 518–521, 1–16.
    [Google Scholar]
  43. SoubarasR. and DowleR.2010. Variable‐depth streamer ‐ a broadband marine solution. First Break28(12), 89–97.
    [Google Scholar]
  44. ThomasY., MarssetB., DidaillerS., RegnaultJ.P., Le ConteS., Le RouxD., FarcyP., MagueurM., ViolletteP., HerveouJ., GuedesJ.C., JegotB., GasconG., Prud’hommeC., NouzéH., ThereauE., ContrucciI. and FoucherJ.P.2004. High Resolution marine 3D seismic: A new surveying tool for the Scientific Community. Comptes Rendus Géoscience336, 579–585.
    [Google Scholar]
  45. TryonM.D., HenryP., ÇağatayM.N., ZitterT.A.C., GéliL., GasperiniL., BurnardP., BourlangeS. and GrallC.2010. Pore fluid chemistry of the North Anatolian Fault Zone in the Sea of Marmara: A diversity of sources and processes. Geochemistry Geophysics Geosystems11, Q0AD03, 22 pp.
    [Google Scholar]
  46. VardyM.E., DixJ.K., HenstockT.J., BullJ.M. and GutowskiM.2008. Decimetre‐resolution 3D seismic volume in shallow water: A case study in small‐object detection. Geophysics73, B33–B40.
    [Google Scholar]
  47. VardyM.E., BullJ.M., DixJ.K., HenstockT.J., PletsR.M.K., GutowskiM. and HogarthP.2011. The geological ‘Hubble’: A reappraisal for shallow water. The Leading Edge, 154–159.
    [Google Scholar]
  48. WardellN., DiviaccoP. and SinceriR.2002. 3D Pre‐processing techniques for marine VHR seismic data. First Break20, 457–466.
    [Google Scholar]
  49. ZitterT.A.C., HenryP., AloisiG., DelaygueG., ÇağatayM.N., Mercier De LepinayB., Al‐SamirM., FornacciariF., TesmerM., PekdegerA., WallmannK. and LericolaisG.2008. Cold seeps along the main Marmara Fault in the Sea of Marmara (Turkey). Deep Sea Research Part I55, 552–570.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2012019
Loading
/content/journals/10.3997/1873-0604.2012019
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error