1887
Volume 21, Issue 4
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

The ∼380‐m‐thick mudstone–siltstone‐dominated Vischkuil Formation represents the initiation phase of a 1.3‐km‐thick prograding basin floor to slope to shelf succession that marks a significant increase in the rate of siliciclastic sediment supply to the early Karoo Basin in the Permian. In the upper Vischkuil Formation three well exposed, widespread (∼3000 km2) 10–70‐m‐thick intervals of deformed strata are encased within undeformed sediments. Such chaotic mass movement deposits that are mappable over areas comparable with seismic‐scale mass transport deposits are commonly associated with submarine slope settings. However, the surrounding lithofacies and the correlation of distinctive marker beds indicate that these deformation intervals developed in a distal low gradient basin floor setting. The deformed intervals comprise a lower division of tight down‐flow verging folds dissected by thrust planes that sole out onto a highly sheared décollement surface that are interpreted as slides. The lower divisions are overlain by an upper division of chaotic lithofacies with large contorted clasts of sandstone supported by a fine‐grained matrix interpreted as a debrite. The juxtaposition of these lithofacies, the distribution of thickness of the divisions, and their close kinematic relationships indicate that the emplacement of the debris‐flows triggered and drove the underlying slide, in a low‐gradient distal setting. Individual beds in the deformed intervals can be mapped laterally into undeformed strata indicating limited movement of the slide. Therefore, widespread zones of syn‐sedimentary deformation in deep‐water settings do not necessarily indicate a slope setting and should not be used as single criterion to determine depositional setting. When associated with major debrites they may be developed on a flat basin floor.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2009.00396.x
2009-03-13
2024-04-25
Loading full text...

Full text loading...

References

  1. Andersson, P.O.D., Worden, R.H., Hodgson, D.M. & Flint, S. (2004) Provenance evolution and chemostratigraphy of a Palaeozoic submarine fan‐complex: Tanqua Karoo Basin, South Africa. Mar. Petrol. Geol., 21, 555–577.
    [Google Scholar]
  2. Bangert, B., Stollhofen, H., Lorenz, V. & Armstrong, R. (1999) The geochronology and significance of ash‐fall tuffs in the glaciogenic Carboniferous–Permian Dwyka Group of Namibia and South Africa. J. Afr. Earth Sci., 29 (1), 33–49.
    [Google Scholar]
  3. Beaubouef, R.T., Abreu, V. & Van Wagoner, J.C. (2003) Basin 4 of the Brazos–Trinity slope system, western Gulf of Mexico: the terminal portion of a late Pleistocene lowstand systems tract. In: Gulf Coast Section‐SEPM Foundation 23rd Annual Bob F. Perkins Research Conference (Ed. by H.H.Roberts , N.C.Rosen , R.H.Fillon & J.B.Anderson ), pp. 182–203.
    [Google Scholar]
  4. Booth, J.R., Dean, M.C., Du Vernay, A.E.III & Styzen, M.J. (2003) Paleo‐bathymetric controls on stratigraphic architecture and reservoir development of confined fans in the Auger Basin: central Gulf of Mexico slope. J. Mar. Petrol. Geol., 20, 563–586.
    [Google Scholar]
  5. Bugge, T., Befring, S., Belderson, R.H., Eldvin, T., Jansen, E., Kenyon, N.H., Holtedahl, H. & Sejrup, H.P. (1987) A giant three‐stage submarine slide off Norway. Geo-Mar. Let., 7, 191–198.
    [Google Scholar]
  6. Canals, M., Lastras, G., Urgeles, R., Casamor, J.L., Mienert, J., Cattaneo, A., De Batist, M., Heflidason, H., Imbo, Y., Laberg, J.S., Locat, J., Long, D., Longvam, O., Masson, D.G., Sultan, N., Trincardi, F. & Bryn, P. (2004) Slope failure dynamics and impacts from seafloor and shallow sub‐seafloor geophysical data: case studies from the COSTA Project. Mar. Geol., 213 (1–4), 9–72.
    [Google Scholar]
  7. Catuneanu, O., Hancox, P.J. & Rubidge, B.S. (1998) Reciprocal flexural behaviour and contrasting stratigraphies: a new basin development model for the Karoo retroarc foreland system, South Africa. Basin Res., 10 (4), 417–439.
    [Google Scholar]
  8. Cole, D.I. (1992) Evolution and development of the Karoo Basin. In: Inversion Tectonics of the Cape Fold Belt, Karoo and Cretaceous Basins of Southern Africa (Ed. by M.J.De Wit & I.G.D.Ransome ), pp. 87–99. A.A. Balkema, Rotterdam.
    [Google Scholar]
  9. Cole, D.I. & McLachlan, I.R. (1991) Oil potential of the Permian Whitehill Shale Formation in the main Karoo Basin, South Africa. In: Gondwana Seven Proceedings (Ed. by H.Ulbrich & A.R.Campos ), pp. 279–390. Instituto de Geociencias, Univ.de Saõ Paulo, Brazil.
    [Google Scholar]
  10. Coleman, J.M. & Garrison, L.E. (1977) Geological aspects of marine slope stability, northwestern Gulf of Mexico. In: Marine Slope Stability (Ed. by A.F.Richards ), Mar. Geotech ., 2, 9–44.
    [Google Scholar]
  11. Coleman, J.M. & Prior, D.B. (1988) Mass wasting on continental margins. Ann. Rev. Earth Planet. Sci., 16, 101–119.
    [Google Scholar]
  12. Coleman, J.M., Prior, D.B. & Garrison, L.E. (1980) Subaqueous Sediment Instabilities in the Offshore Mississippi River Delta. A final report by Louisiana State University and the U.S. Department of the Interior, U.S. Geological Survey for the U.S. Department of the Interior, Bureau of Land Management Gulf of Mexico OCS Office, New Orleans, LA. NTIS No. PB80‐224629. BLM Open File Report 80‐01. Contract No. AA551‐MU9‐10, p. 60.
  13. Coleman, J.M., Walker, H.J. & Grabau, W.E. (1998) Sediment instability in the Mississippi River Delta. J. Coast. Res., 14 (3), 872–881.
    [Google Scholar]
  14. Cossey, S.P.J. & Jacobs, R.E. (1992) Oligocene Hackberry Formation of southwest Louisiana: sequence stratigraphy, sedimentology, and hydrocarbon potential. AAPG Bull., 76, 589–606.
    [Google Scholar]
  15. DasGupta, P. (2008) Experimental decipherment of the soft‐sediment deformation observed in the upper part of the Talchir Formation (Lower Permian), Jharia Basin, India. Sed. Geol., 205, 100–110.
    [Google Scholar]
  16. De Beer, C.H. (1992) Structural evolution of the Cape Fold Belt syntaxis and its influence on syntectonical sedimentation in the SW Karoo Basin. In: Inversion Tectonics of the Cape Fold Belt, Karoo and Cretaceous Basins of Southern Africa (Ed. by M.J.De Wit & I.G.D.Ransome ), pp. 197–206. A.A. Balkema, Rotterdam.
    [Google Scholar]
  17. Dingle, R.V. (1977) The anatomy of a large submarine slump on a sheared continental margin (SE Africa). J. Geol. Soc. London, 134 (3), 293–310.
    [Google Scholar]
  18. Embley, R.W. (1976) New evidence for occurrence of debris flow deposits in the deep sea. Geology., 4, 371–374.
    [Google Scholar]
  19. Embley, R.W. & Jacobi, R.D. (1977) Distribution and morphology of large submarine sediment slides and slumps on Atlantic continental margins. In: Marine Slope Stability (Ed. by A.F.Richards ), Mar. Geotech ., 2, 205–228.
    [Google Scholar]
  20. Eschard, R., Albouy, E., Deschamps, R., Euzen, T. & Ayub, A. (2003) Downstream evolution of turbiditic channel complexes in the Pab Range outcrops (Maastrichian, Pakistan). Mar. Petrol. Geol., 20, 691–710.
    [Google Scholar]
  21. Evans, D., Stoker, M.S. & Cramp, A. (1998) Geological processes on continental margins: sedimentation, mass‐wasting and stability: an introduction. In: Geological Processes on Continental Margins: Sedimentation, Mass Wasting and Stability (Ed. by M.S.Stoker , D.Evans & A.Cramp ), Geol. Soc. London Spec. Publ. , 129, 1–5.
    [Google Scholar]
  22. Farrell, S.G. (1984) A dislocation model applied to slump structures, Ainsa Basin, South Central Pyrenees. J. Struct. Geol., 6 (6), 727–736.
    [Google Scholar]
  23. Fildani, A., Drinkwater, N.J., Weislogel, A., McHargue, T., Hodgson, D.M. & Flint, S.S. (2007) Age controls on the Tanqua and Laingsburg deep‐water systems: new insights on evolution and sedimentary fill of the Karoo basin, South Africa. J. Sediment. Res., 77 (11–12), 901–908.
    [Google Scholar]
  24. Flint, S.S., Hodgson, D.M., Sixsmith, P.J., Grecula, M. & Wickens, H.De‐V. (2007) Deep‐water Basin‐floor and slope deposits of the Laingsburg Depocentre, Karoo Basin, South Africa. In: Atlas of Deep‐water Outcrops (Ed. by T.H.Nilsen , R.D.Shew , G.S.Steffens & J.R.J.Studlick ), AAPG Stud. Geol. , 56, 326–329.
  25. Frey‐Martinez, J., Cartwright, J. & Hall, B. (2005) 3D seismic interpretation of slump complexes: examples from the continental margin of Israel. Basin Res., 17, 83–108.
    [Google Scholar]
  26. Gardner, M.H., Borer, J.M., Melick, J.J., Mavilla, N., Dechesne, M. & Wagerle, R.N. (2003) Stratigraphic process‐response model for submarine channels and related features from studies of Permian Brushy Canyon outcrops, West Texas. Mar. Petrol. Geol., 20, 757–787.
    [Google Scholar]
  27. Gee, M.J.R., Gawthorpe, R.L. & Friedmann, S.J. (2006) Triggering and evolution of a Giant Submarine Landslide, Offshore Angola, revealed by 3D seismic stratigraphy and geomorphology. J. Sediment. Res., 76, 9–19.
    [Google Scholar]
  28. Gee, M.J.R., Masson, D.G, Watts, A.B. & Allen, P.A. (1999) The Saharan debris flow: an insight into the mechanics of long runout submarine debris flows. Sedimentology, 46, 317–335.
    [Google Scholar]
  29. Gee, M.J.R., Uy, H.S., Warren, J., Morley, C.K. & Lambiase, J.J. (2007) The Brunei slide: a giant submarine landslide on the North West Borneo Margin revealed by 3D seismic data. Mar. Geol., 246 (1), 9–23.
    [Google Scholar]
  30. Gee, M.J.R., Watts, A.B., Masson, D.G. & Mitchell, N.C. (2001) Landslides and the evolution of El hierro in the Canary Islands. Mar. Geol., 177, 271–293.
    [Google Scholar]
  31. Goldfinger, C., Kulm, L.D., McNeill, L.C. & Watts, P. (2000) Super‐scale failure of the southern Oregon Cascadia margin: pure and applied geophysics. In: Pure Applied Geophysics (Special Issue on Landslides), Vol. 157 (Ed. by B.Keating & C.Waythomas ), pp. 1189–1226.
    [Google Scholar]
  32. Grecula, M., Flint, S.S., Potts, G., Wickens, H.De‐V. & Johnson, S.D. (2003b) Partial ponding of turbidite systems in a basin with subtle growth‐fold topography: Laingsburg-Karoo, South Africa. J. Sediment. Res., 73 (4), 603–620.
    [Google Scholar]
  33. Grecula, M., Flint, S.S., Wickens, H.De‐V. & Johnson, S.D. (2003a) Upward‐thickening patterns and lateral continuity of Permian sand‐rich turbidite channel fills, Laingsburg Karoo, South Africa. Sedimentology, 50, 831–853.
    [Google Scholar]
  34. Haflidason, H., Lien, R., Sejrup, H.P., Forsberg, C.F. & Bryn, P. (2005) The dating and morphometry of the Storegga slide. Mar. Petrol. Geol., 22, 123–136.
    [Google Scholar]
  35. Haflidason, H., Sejrup, H.P., Nygård, A., Mienert, J., Bryn, P., Lien, R., Forsberg, C.F., BergK., & Masson, D. (2004) The Storegga slide: architecture, geometry and slide development. Mar. Geol., 213, 201–223.
    [Google Scholar]
  36. Hälbich, I.W., Fitch, F.J. & Miller, J.A. (1983) Dating the Cape Orogeny. In: Geodynamics of the Cape Fold Belt (Ed. by A.P.G.Söhnge & I.W.Hälbich ), Spec. Pub. Geol. Soc. S. Afr. , 12, 149–164.
    [Google Scholar]
  37. Hampton, M.A. & Bouma, A.H. (1977) Slope instability near the shelf break, western Gulf of Alaska. In: Marine Slope Stability (Ed. by A.F.Richards ), Mar. Geotech. , 2, 309–331.
    [Google Scholar]
  38. Hesthammer, J. & Fossen, H. (1999) Evolution of geometries of gravitational collapse structures with examples from Statfjord field, northern North Sea. Mar. Petrol. Geol., 16, 259–281.
    [Google Scholar]
  39. Jansen, E., Befring, S., Bugge, T., Eidvin, T., Holtedahl, H. & Sejrip, H.P. (1987) Large submarine slides on the Norwegian continental margin: sediments, transport and timing. Mar. Geol., 78, 77–107.
    [Google Scholar]
  40. Jenner, K.A., Piper, D.J.W., Campbell, D.C. & Mosher, D.C. (2007) Lithofacies and origin of late Quaternary mass transport deposits in submarine canyons, central Scotian Slope, Canada. Sedimentology, 54, 19–38.
    [Google Scholar]
  41. Johnson, M.R. (1991) Sandstone petrography, provenance and plate tectonic setting in Gondwana context of the southeastern Cape‐Karoo Basin. S. Afr. J. Geol., 94, 137–154.
    [Google Scholar]
  42. Johnson, M.R., Van Vuuren, C.J., Visser, J.N.J., Cole, D.I., Wickens, H.DeV., Christie, A.D.M. & Roberts, D.L. (1997) The Foreland Karoo Basin, South Africa. In: Sedimentary Basins of the World. African Basins (Ed. by K.J.Hsü , Series editor R.C.Selley ), pp. 269–317. Elsevier, London.
    [Google Scholar]
  43. King, R.C. (2005) Structural evolution of the Cape Fold Belt; implications for sediment routing to the SW Karoo Basin. Unpublished PhD thesis, University of Liverpool, pp353.
  44. Kingsley, C.S. (1981) A composite submarine fan‐delta‐fluvial model for the Ecca and lower Beaufort Groups of Permian age in the Eastern Cape province, South Africa. Trans. Geol. Soc. S. Afr., 84, 27–40.
    [Google Scholar]
  45. Laberg, J.S., Vorren, T.O. & Knutsen, S.M. (2002) The Lofoten Drift, Norwegian Sea. In: Deep‐Water Contourite Systems: Modern Drifts and Ancient Series, Seismic and Sedimentary Characteristics (Ed. by D.A.W.Stow , C.J.Pudsey , J.A.Howe , J.C.Faugeres & A.Viana ), Geol. Soc. Mem. London , 22, 57–64.
    [Google Scholar]
  46. Le Roux, J.P. (1995) Heartbeat of a mountain: diagnosing the age of depositional events in the Karoo (Gondwana) basin from the pulse of the Cape Orogen. Geol. Rundsch, 84, 626–635.
    [Google Scholar]
  47. Lewis, K.B. (1971) Slumping on continental slope inclined at 1°–4°. Sedimentology, 16, 97–110.
    [Google Scholar]
  48. Lucente, C.C. & Pini, G.A. (2003) Anatomy and emplacement mechanism of a large submarine slide within the Miocene foredeep in the Northern Apennines, Italy: a field perspective. Am. J. Science, 303, 565–602.
    [Google Scholar]
  49. Lucente, C.C. & Pini, G.A. (2008) Basin‐wide mass‐wasting complexes as markers of the Oligo‐Miocene foredeep‐accretionary wedge evolution in the Northern Apennines, Italy. Basin Res., 20 (1), 49–71.
    [Google Scholar]
  50. Lykousis, V., Rousakis, G., Alexandri, M., Pavlakis, P. & Papoulia, I. (2002) Sliding and regional slope stability in active margins: North Aegean Trough (Mediterranean). Mar. Geol., 186, 281–298.
    [Google Scholar]
  51. Macdonald, D.I.M., Moncrieff, A.C.M. & Butterworth, P.J. (1993) Giant slide deposits from a Mesozoic fore‐arc basin, Alexander Island, Antarctica. Geology, 21, 1047–1050.
    [Google Scholar]
  52. Martinsen, O.J. & Bakken, B. (1990) Extensional and compressional zones in slumps and slides in the Namurian of County Clare, Eire. J. Geol. Soc. Lond., 147, 153–164.
    [Google Scholar]
  53. Martinsen, O.J. & Collinson, J.D. (2002) The Western Irish Namurian Basin reassessed‐a discussion. Basin Res., 14, 523–542.
    [Google Scholar]
  54. Martinsen, O.J., Lien, T., Walker, R.G. & Collinson, J.D. (2003) Facies and sequential organisation of a mudstone dominated slope and basin floor succession: the Gull Island, Formation, Shannon Basin, Western Ireland. Mar. Petrol. Geol., 20, 789–807.
    [Google Scholar]
  55. Maslin, M.A. & Mikkelsen, N. (1998) Timing of the late Quaternary Amazon Fan complex mass‐transport deposits. In: Geological Evolution of Ocean Basins: Results from the Ocean Drilling Program (Ed. by A.Cramp , C.MacLeod , S.Lee & J.Jones ), Geol. Soc. Spec. Publ., 131, 129–150.
    [Google Scholar]
  56. Masson, D.G., Canals, M., Alonso, B., Urgeles, R. & Huhnerbach, V. (1998) The canary debris flow; source area morphology and failure mechanisms. Sedimentology, 45, 411–432.
    [Google Scholar]
  57. Masson, D.G., Huggett, Q.J. & Brunsden, D. (1993) The surface texture of the Saharan Debris Flow and some speculations on submarine debris flow processes. Sedimentology, 40, 583–598.
    [Google Scholar]
  58. Masson, D.G., Watts, A.B., Gee, M.J.R., Urgeles, R., Mitchell, N.C., Le Bas, T.P. & Canals, M. (2002) Slope failures on the flanks of the western Canary Islands. Earth Sci. Rev., 57, 1–35.
    [Google Scholar]
  59. McAdoo, B.G., Pratson, L.F. & Orange, D.L. (2000) Submarine landslide geomorphology, U.S. continental slope. Mar. Geol., 169, 103–136.
    [Google Scholar]
  60. McGilvery, T.A. & Cook, D.L. (2003) The influence of local gradients on accommodation space and linked depositional elements across a stepped slope profile, offshore Brunei. In: Gulf Coast Section (Ed. by H.H.Roberts , N.C.Rosen , R.H.Fillon & J.B.Anderson , SEPM Foundation 23rd Annual Bob F. Perkins Research Conference , 23–55.
    [Google Scholar]
  61. Minisini, D., Trincardi, F., Asioli, A., Canuz, M. & Foglini, F. (2007) Morphologic variability of exposed mass‐transport deposits on the eastern slope of Gela Basin (Sicily channel). Basin Res., 19, 217–240.
    [Google Scholar]
  62. Moscardelli, L., Wood, L. & Mann, P. (2006) Mass‐transport complexes and associated processes in the Offshore Area of Trinidad and Venezuela. AAPG Bull., 90, 1059–1088.
    [Google Scholar]
  63. Moscardelli, L. & Wood, L.J. (2008) New classification system for mass transport complexes in offshore Trinidad. Basin Res., 20 (1), 73–98.
    [Google Scholar]
  64. Mulder, T. & Cochonat, P. (1996) Classification of offshore mass movements. J. Sediment. Res., 66, 43–57.
    [Google Scholar]
  65. Newton, S., Mosher, D., Shipp, C. & Wach, G. (2004) Importance of mass transport complexes in the Quaternary development of the Nile Fan, Egypt. OTC Conference Proceedings. 16742, p. 10.
  66. Norem, H., Locat, J. & Schieldrop, B. (1990) An approach to the physics and the modelling of submarine flowslides. Mar. Geotech., 9, 93–111.
    [Google Scholar]
  67. Pickering, K.T. & Corregidor, J. (2005) Mass transport complexes and tectonic control on confined basin‐floor submarine fans, Middle Eocene, south Spanish Pyrenees. In: Submarine Slope Systems: Processes and Products (Ed. by D.M.Hodgson & S.S.Flint ), Geol. Soc., London Spec. Publ., 244, 113–129.
    [Google Scholar]
  68. Piper, D.J.W., Pirmez, C., Manley, P.L., Long, D., Flood, R.D., Normark, W.R. & Showers, W. (1997) Mass‐transport deposits of the Amazon Fan. In: Proceedings Ocean Drilling Project (Ed. by R.D.Flood , D.J.W.Piper , A.Klaus & L.C.Peterson , Sci. Res., 155, 109–146.
    [Google Scholar]
  69. Posamentier, H.W. (2003) Depositional elements associated with a basin floor channel‐levee system: case study from the Gulf of Mexico. Mar. Petrol. Geol., 20 (6–8), 677–690.
    [Google Scholar]
  70. Posamentier, H.W. & Kolla, V. (2003) Seismic geomorphology and stratigraphy of depositional elements in deep‐water settings. J. Sediment. Res., 73, 367–388.
    [Google Scholar]
  71. Pysklywec, R.N. & Mitrovica, J.X. (1999) The role of subduction‐induced subsidence in the evolution of the Karoo Basin. J. Geol., 107, 155–164.
    [Google Scholar]
  72. Rupke, N.A. (1976) Large‐scale slumping in a flysch basin, southwestern Pyrenees. J. Geol. Soc., 132, 121–130.
    [Google Scholar]
  73. Sawyer, D.E., Flemings, P.B., Shipp, R.C. & Winker, C.D. (2007) Seismic geomorphology, lithology, and evolution of the late Pleistocene Mars–Ursa turbidite region, Mississippi Canyon area, northern Gulf of Mexico. AAPG Bull., 91, 215–234.
    [Google Scholar]
  74. Schnellmann, M., Anselmetti, F., Giardini, D. & McKenzie, J.A. (2005) Mass movement‐induced fold‐and‐thrust belt structures in unconsolidated sediments in Lake Lucerne (Switzerland). Sedimentology, 52, 271–289.
    [Google Scholar]
  75. Sixsmith, P.J., Flint, S.S., Wickens, H.de V. & Johnson, S.D. (2004) Anatomy and stratigraphic development of a Basin floor turbidite system in the Laingsburg Formation, Main Karoo Basin, South Africa. J. Sediment .Res., 74 (2), 239–254.
    [Google Scholar]
  76. Stoker, M.S., Evans, D. & Cramp, A. (1998) Geological processes on continental margins: sedimentation, mass-wasting and stability. Geol. Soc. London, Spec. Publ., 129.
    [Google Scholar]
  77. Stow, D.A.V., Reading, H.G. & Collinson, J.D. (1996) Deep seas. In: Sedimentary Environments: Processes, Facies and Stratigraphy, 3rd edn, Ed. by H.G.Reading ), pp. 395–453. Blackwell Scientific Publications, Oxford.
    [Google Scholar]
  78. Strachan, L.J. (2002) Slump‐initiated and controlled syndepositional sandstone remobilization; an example from the Namurian of County Clare, Ireland. Sedimentology, 49, 25–41.
    [Google Scholar]
  79. Strachan, L.J. & Alsop, G.I. (2006) Slump folds as indicators of palaeoslope: a case study from the Fisherstreet Slump of County Clare, Ireland. Basin Res., 18, 451–470.
    [Google Scholar]
  80. Sultan, N., Cochonat, P., Canals, M., Cattaneo, A., Dennielou, B., Haflidason, H., Laberg, J.S., Long, D., Mienert, J., Trincardi, F., Urgeles, R., Vorren, T. & Wilson, C. (2004) Triggering mechanisms of slope instability processes and sediment failures on continental margins: a geotechnical approach. Mar. Geol., 213, 291–321.
    [Google Scholar]
  81. Sultan, N., Voisset, M., Marsset, B., Marsset, T., Cauquil, E. & Colliat, J.‐L. (2007) Potential role of compressional structures in generating submarine slope failures in the Niger Delta. Mar. Geol., 237 (3–4), 169–190.
    [Google Scholar]
  82. Theron, A.C. (1967) The sedimentology of the Koup Subgroup near Laingsburg. Unpublished MSc thesis, University of Stellenbosch. p. 25.
  83. Tripsanas, E.K., Bryant, W.R. & Phaneuf, B.A. (2004) Slope‐instability processes caused by salt movements in a complex deep‐water environment, Bryant Canyon area, northwest Gulf of Mexico. AAPG Bull., 88, 801–823.
    [Google Scholar]
  84. Turner, B.R. (1999) Tectonostratigraphical development of the Upper Karoo foreland basin: orogenic unloading versus thermally induced Gondwana rifting. J. Afr. Earth Sci., 28 (1), 215–238.
    [Google Scholar]
  85. Van Lente, B. (2004) Chemostratigraphic trends and provenance of the Permian Tanqua and Laingsburg depocentres, southwestern Karoo basin, South Africa. Unpublished PhD thesis, University of Stellenbosch. p. 439.
  86. Veevers, J.J., Cole, D.I. & Cowan, E.J. (1994) Southern Africa: Karoo Basin and Cape Fold Belt. In: Permian‐Triassic Pangean Basins and Foldbelts along the Panthalassan Margin of Gondwanaland (Ed. by J.J.Veevers & McA.C.Powell ), Geol. Soc. America Mem., 184, 223–279.
    [Google Scholar]
  87. Viljoen, J.H.A. (1992) Lithostratigraphy of the Collingham Formation (Ecca Group), including the Zoutkloof, Buffels river and Wilgenhout river members and the Matjiesfontein chert bed. Geological Survey, South African Committee for Stratigraphy –Lithostratigraphic Series no. 22, p. 10. ISBN 0‐621‐14960‐8
  88. Viljoen, J.H.A. (1994) Sedimentology of the Collingham Formation, Karoo Supergroup. S. Afr. J. Geol., 97 (2), 167–183.
    [Google Scholar]
  89. Viljoen, J.H.A. (1995) Piroklastiese afsettings van Perm‐ouderdom in die Hoof‐Karookom met spesiale verwysing na die Collingham Formasie, Ecca Groep, Unpublished PhD thesis, University of Stellenbosch. p. 274.
  90. Visser, J.N.J. (1987) The palaeogeography of part of south‐western Gondwana during the Permo‐Carboniferous glaciations. Palaeogeol. Palaeoclim. Palaeoecol., 61, 205–219.
    [Google Scholar]
  91. Visser, J.N.J. (1990) The age of the late Palaeozoic glacigene deposits in southern Africa. S. Afr. J. Geol., 93, 366–375.
    [Google Scholar]
  92. Visser, J.N.J. (1992) Deposition of the early to late Permian Whitehill Formation during a sea‐level highstand in a juvenile foreland basin. S. Afr. J. Geol., 95, 181–193.
    [Google Scholar]
  93. Visser, J.N.J. (1993) Sea‐level changes in a back‐arc‐foreland transition: the late Carboniferous-Permian Karoo Basin of South Africa. Sed. Geol., 83, 115–131.
    [Google Scholar]
  94. Weimer, P. (1990) Sequence stratigraphy, facies geometries, and depositional history of the Mississippi Fan, Gulf of Mexico. AAPG Bull., 74, 425–453.
    [Google Scholar]
  95. Weimer, P. & Slatt, R.M. (2006) Introduction to the petroleum geology of deepwater settings. AAPG Stud. Geol., 57, 419–456.
    [Google Scholar]
  96. Wickens, H.de V. (1992) Submarine fans of the Permian Ecca group in the SW Karoo Basin: their origin and reflection on the tectonic evolution of the basin and its source areas. In: Inversion tectonics of the Cape Fold Belt, Karoo and Cretaceous Basins of Southern Africa (Ed. by M.J.De Wit & I.G.D.Ransom ), pp. 117–125. A.A. Balkema, Rotterdam.
    [Google Scholar]
  97. Wickens, H.de V. (1994) Basin Floor Fan building Turbidites of the South‐western Karoo Basin, Permian Ecca Group, South Africa. Unpublished PhD thesis, University of Port Elizabeth. p. 233.
  98. Woodcock, N.H. (1979a) Sizes of submarine slides and their significance. J. Struct. Geol., 1, 137–142.
    [Google Scholar]
  99. Woodcock, N.H. (1979b) The use of slump structures as palaeoslope orientation estimators. Sedimentology, 26, 83–99.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2009.00396.x
Loading
/content/journals/10.1111/j.1365-2117.2009.00396.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error