1887
Volume 21, Issue 2
  • E-ISSN: 1365-2117

Abstract

Abstract

The Phan Rang Carbonate Platform located offshore south Vietnam covers more than 15 000 km2, making it one of the largest carbonate platforms in the South China Sea. Based on 2‐D seismic analysis, this paper outlines the platform evolution and analyzes the regional tectonic, climatic and oceanic factors that controlled the platform growth and demise. This study of the Phan Rang Carbonate Platform therefore provides an analogue to the regions late Neogene carbonates that form important targets for petroleum exploration. Platform growth initiated during the late middle Miocene along the open marine Vietnamese margin and continued throughout the late synrift to early postrift period of the area terminating around Pliocene time. During this period, the structural grain, local and regional tectonics as well as oceanographic effects exerted major controls on carbonate deposition. Optimal growth conditions existed during initial platform deposition and locally accumulation rates reached . 230 m Ma−1. Late Miocene regional uplift caused subaerial exposure that interrupted platform growth and caused intense karstification. A gradual reestablishment of marine conditions promoted renewed platform growth. However, carbonate production was stressed by increased terrigenous input caused by onshore uplift and by inorganic nutrification of the surface waters. Nutrification probably occurred in response to increased nutrient influx derived from onshore denudation, enhanced periodically by soil ravinement during transgression. The onset or intensification of summer upwelling along the southern platform margin occurred in response to the onshore uplift and most likely contributed to the nutrification. The deteriorated growth conditions and fast subsidence resulted in platform split‐up, backstepping and local drowning. Subsequently, isolated platforms nucleated on structural highs as transgression continued. The remaining platforms thrived for a period but eventually failed to keep pace with subsidence, backstepped and drowned. The longest surviving platform now crops out at the seafloor at . 500 m depth.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2008.00380.x
2008-09-19
2024-04-19
Loading full text...

Full text loading...

References

  1. Bachtel, S.T., Kissling, R.D., Martono, D., Rahardjanto, S.P., Dunn, P.A. & MacDonald, B.A. (2004) Seismic stratigraphic evolution of the Miocene‐Pliocene Segitiga platform, East Natuna Sea, Indonesia: the origin growth and demise of an isolated carbonate platform. In: Seismic Imaging of Carbonate Reservoirs and Systems (Ed. by G.P.Eberli , J.L.Masaferro & J.F.R.Sarg ), AAPG Mem., 81, 309–328.
    [Google Scholar]
  2. Barckhausen, U. & Roeser, H.A. (2004) Seafloor spreading anomalies in the South China Sea revisited. In: Continent‐Ocean Interactions within East Asian Marginal Seas (Ed. by P.Clift , P.Wang , W.Kuhnt & D.Hayes ), Geophys. Monogr., 149 pp. 121–126. AGU, Washington, D.C.
    [Google Scholar]
  3. Bosscher, H. & Schlager, W. (1993) Accumulation rates of carbonate platforms. J. Geol., 101, 345–355.
    [Google Scholar]
  4. Briais, A., Patriat, P. & Tapponnier, P. (1993) Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: implications for the tertiary tectonics of Southeast Asia. J. Geophys. Res., 98 (no B4), 6299–6328.
    [Google Scholar]
  5. Canh, T., Ha, D.V., Carstens, H. & Berstad, S. (1994) Viet Nam – attractive plays in a new geological province. Oil Gas J., 14 March 1994, 78–83.
    [Google Scholar]
  6. Carter, A., Roques, D. & Bristow, C.S. (2000) Denudation history of onshore Central Vietnam: constraints on the Cenozoic evolution of the western margin of the South China Sea. Tectonophysics, 322, 265–277.
    [Google Scholar]
  7. Chen, M., Wang, R., Yang, L., Han, J. & Lu, J. (2003) Development of east Asian summer monsoon environments in the late Miocene: radiolarian evidence from Site 1143 of ODP Leg 184. Mar. Geol., 201, 169–177.
    [Google Scholar]
  8. Clift, P.D. & Sun, Z. (2006) The sedimentary and tectonic evolution of the Yinggehai–Song Hong basin and the southern Hainan margin, South China Sea: implications for Tibetan uplift and monsoon intensification. J. Geophys. Res., 111 (no. B6), 1–28.
    [Google Scholar]
  9. Deminex
    Deminex (1979) Completion report, Exploration well Deminex 15‐G‐1X, Mekong Basin–SR Vietnam, Offshore. Unpublished report. 104 pp.
  10. Epting, M. (1980) Sedimentology of Miocene carbonate buildups, central Luconia, offshore Sarawak. Bull. Geol. Soc. Malaysia, 12, 17–30.
    [Google Scholar]
  11. Epting, M. (1989) The Miocene carbonate buildups, central Luconia, offshore Sarawak. In: Atlas of Seismic Stratigraphy (Ed. by A.W.Bally ), AAPG Stud. Geol., 27, 68–173.
    [Google Scholar]
  12. Erlich, R.N., Barrett, S.F. & Ju, S.F. (1990) Seismic and geologic characteristics of drowning events on carbonate platforms. AAPG Bull., 74, 1523–1537.
    [Google Scholar]
  13. Erlich, R.N., Longo, A.P. & Hyare, S. (1993) Response of platform margins to drowning; evidence of environmental collapse. In: Carbonate Sequence Stratigraphy Recent Developments and Applications (Ed. by R.G.Loucks & J.F.Sarg ), AAPG Mem., 57, 241–266.
    [Google Scholar]
  14. Fournier, F. & Borgomano, J. (2007) Geological significance of seismic reflections and imaging of the reservoir architecture in the Malampaya gas field (Philippines). AAPG Bull., 91, 235–258.
    [Google Scholar]
  15. Fournier, F., Borgomano, J. & Montaggioni, L.F. (2005) Development patterns and controlling factors of Tertiary carbonate buildups: insight from high-resolution 3D seismic and well data in the Malampaya gas field (offshore Palawan, Philippines). Sediment. Geol., 175, 189–215.
    [Google Scholar]
  16. Fournier, F., Montaggioni, L. & Borgomano, J. (2004) Paleoenvironments and high‐frequency cyclicity from Cenozoic South‐East asian shallow‐water carbonates: a case study from the Oligo-Miocene buildups of Malampaya (offshore Palawan, Phillipines). Mar. Petrol. Geol., 21, 1–21.
    [Google Scholar]
  17. Fulthorpe, C.S. & Schlanger, S.O. (1989) Paleo‐oceanographic and tectonic settings of early Miocene reefs and associated carbonates of offshore Southeast Asia. AAPG Bull., 73, 729–756.
    [Google Scholar]
  18. Fyhn, M.B.W., Nielsen, L.H., Boldreel, L.O., Thang, L.D., Bojesen‐Koefoed, J., Petersen, H.I., Huyen, N.T., Duc, N.A., Dau, N.T., Mathiesen, A., Reid, I., Houng, D.T., Tuan, H.A., Hien, L.V., Nytoft, H.P. & Abatzis, I.Geological evolution, regional perspectives and hydrocarbon potential of the northwest Phu Khanh Basin, offshore Central Vietnam. Mar. Petrol. Geol. (in press) DOI: DOI: 10.1016/j.marpetgeo.2007.07.014.
    [Google Scholar]
  19. Hallock, P. (1988) The role of nutrient availability in bioerosion: consequence to carbonate buildups. Palaeogeogr. Palaeoclimatol. Palaeoecol., 63, 275–291.
    [Google Scholar]
  20. Hallock, P. & Schlager, W. (1986) Nutrient excess and the demise of coral reefs and platforms. Palaios, 1, 389–398.
    [Google Scholar]
  21. Heubeck, C., Story, K., Peng, P., Sullivan, C. & Duff, S. (2004) An integrated reservoir study of the Liuhua 11‐1 Field using a high‐resolution three‐dimensional seismic data set. In: Seismic Imaging of Carbonate Reservoirs and Systems (Ed. by G.P.Eberli , J.L.Masaferro & J.F.R.Sarg ), AAPG Mem., 81, 149–168.
    [Google Scholar]
  22. Hine, A.C. & Mullins, H.T. (1983) The carbonate shelf‐slope break. In: The Shelf Break: Critical Interfaces on Continental Margins (Ed. by D.J.Stanley & G.T.Moore ), SEPM Spec. Publ., 33, 169–183.
    [Google Scholar]
  23. Hoang, N. & Flowers, M. (1998) Petrogenesis of Cenozoic basalts from Vietnam: implication for origins of a ‘Diffuse Igneous Province’. J. Petrol., 39, 369–395.
    [Google Scholar]
  24. Holland, D.C., Dickens, J.S. & Horbury, A.D. (1992) A case of drowning–the death of a carbonate platform in the South China Sea. Abs., In: AAPG International Conference and Exhibition, Sydney Australia.
  25. Hughes, T.P. (1999) Off‐reef transport of coral fragments at Lizard Island, Australia. Mar. Geol., 157, 1–6.
    [Google Scholar]
  26. Jishu, C., Shice, X. & Jinyu, S. (1994) The depositional characteristics and oil potential of paleo Pearl River delta systems in the Pearl River Mouth basin, South China Sea. Tectonophysics, 235, 1–11.
    [Google Scholar]
  27. Kuo, N.‐J., Zheng, Q. & Ho, C.‐R. (2000) Satellite observation of upwelling along the western coast of the South China Sea. Remote Sens. Environ., 74, 463–470.
    [Google Scholar]
  28. Lee, G.H., Lee, K. & Watkins, J.S. (2001) Geological evolution of the Cuu Long and Nam Con Son basins, offshore southern Vietnam, South China Sea. AAPG Bull., 85, 1055–1082.
    [Google Scholar]
  29. Lee, G.H. & Watkins, J.S. (1998) Seismic stratigraphy and hydrocarbon potential of the Phu Khan Basin, offshore Central Vietnam, South China Sea. AAPG Bull., 82, 1711–1735.
    [Google Scholar]
  30. Marquis, G., Roques, D., Huchon, P., Coulon, O., Chamot‐Rooke, N., Rangin, C. & Le Pichon, X. (1997) Amount and timing of extension along the margin off Central Vietnam. Bull. Soc. Geol. France, 168, 707–716.
    [Google Scholar]
  31. Matthews, S.J., Fraser, A.J., Lowe, S., Todd, S.P. & Peel, F.J. (1997) Structure, stratigraphy and petroleum geology of the SE Nam Con Son, offshore Vietnam. In: Petroleum Geology of Southeast Asia (Ed. by A.J.Fraser , S.J.Matthews & R.W.Murphy ), Geol. Soc. Lond. Spec. Publ., 126, 89–106.
    [Google Scholar]
  32. Mayall, M.J., Bent, A. & Roberts, D.M. (1997) Miocene carbonate buildups offshore Socialist Republic Vietnam. In: Petroleum Geology of Southeast Asia (Ed. by A.J.Fraser , S.J.Matthews & R.W.Murphy ), Geol. Soc. Lond. Spec. Publ., 126, 117–120.
    [Google Scholar]
  33. McNeill, D.F. (2005) Accumulation rates from well‐dated late Neogene carbonate platforms and margins. Sediment. Geol., 175, 73–87.
    [Google Scholar]
  34. Miller, K.G., Kominz, M.A., Browning, J.V., Wright, J.D., Mountain, G.S., Katz, M.E., Sugarman, P.J., Cramer, B.S., Christie‐Blick, N. & Pekar, S.F. (2005) The phanerozoic record of global sea‐level change. Science, 310, 1293–1298.
    [Google Scholar]
  35. Moldovanyi, E.P., Waal, F.M. & Yan, Z.J. (1995) Regional exposure events and platform evolution of Zhuijang formation carbonates, Pearl River Mouth Basin: evidence for primary and diagenetic seismic facies. In: Unconformities and Porosity in Carbonate Strata (Ed. by D.A.Budd , A.H.Saller & P.M.Harris ), AAPG Mem., 63, 133–145.
    [Google Scholar]
  36. Morley, C.K. (2002) A tectonic model for the   Tertiary evolution of strike‐slip faults and rift basins in SE Asia. Tectonophysics, 347, 189–215.
    [Google Scholar]
  37. Mutti, M., Droxler, A.W. & Cunningham, A.D. (2005) Evolution of the Northern Nicaragua Rise during the Oligocene–Miocene: drowning by environmental factors. Sediment. Geol., 175, 237–258.
    [Google Scholar]
  38. Mutti, M. & Hallock, P. (2003) Carbonate systems along nutrient and temperature gradients: some sedimentological and geochemical constraints. Int. J. Earth Sci., 92, 465–475.
    [Google Scholar]
  39. Neuhaus, D., Borgomano, J., Jauffred, J‐C., Mercadier, C., Olotu, S. & Grötsch, J. (2004) Quantitative seismic reservoir characterization of an Oligocene–Miocene carbonate buildup: Malampaya Field, Philippines. In: Seismic Imaging of Carbonate Reservoirs and Systems (Ed. by G.P.Eberli , J.L.Masaferro & J.F.R.Sarg ), AAPG Mem., 81, 309–328.
    [Google Scholar]
  40. Nielsen, L.H., Petersen, H.I., Thai, N.D., Duc, N.A., Fyhn M, B.W., Boldreel, L.O., Tuan, H.A., Lindstr öm, S. & Hien, L.V. (2007) A middle–upper Miocene fluvial–lacustrine rift sequence in the Song Ba Rift, Vietnam: an analogue to oil-prone, small-scale continental rift basins. Petrol. Geosci., 13, 145–168.
    [Google Scholar]
  41. Pomar, L. (2001) Types of carbonate platforms: a genetic approach. Basin Res., 13, 313–334.
    [Google Scholar]
  42. Pubellier, M., Rangin, C. & Le Pichon, X.Dotsea Working group (2005) Dotsea: a synthesis of deep marine data in Southeast Asia. Mem. Soc. Geol. France, 176, 1–32, 6 plates+CD ROM.
    [Google Scholar]
  43. Purdy, E.G. & Gischler, E. (2005) The transient nature of the empty bucket model of reef sedimentation. Sediment. Geol., 175, 35–47.
    [Google Scholar]
  44. Rangin, C., Huchon, P., Le Pichon, X., Bellon, H., Lepvrier, C., Roques, D., Hoe N, D. & Quynh, P.V. (1995) Cenozoic deformation of Central and South Vietnam. Tectonophysics, 235, 179–196.
    [Google Scholar]
  45. Read, J.F. (1982) Carbonate platforms of passive (extensional) continental margins: types characteristics and evolution. Tectonophysics, 81, 195–212.
    [Google Scholar]
  46. Read, J.F. (1985) Carbonate platform facies models. AAPG Bull., 69, 1–21.
    [Google Scholar]
  47. Roberts, H.H., Ahron, P. & Phipps, C.V. (1988) Morphology and sedimentology of Halimeda bioherms from the eastern Java Sea (Indonesia). Coral Reefs, 6, 161–172.
    [Google Scholar]
  48. Roques, D., Matthews, S.J. & Rangin, C. (1997a) Constraints on strike‐slip motion from seismic and gravity data along the Vietnam margin offshore Dan Nang: implications for hydrocarbon prospectivity and opening of the East Vietnam Sea. In: Petroleum Geology of Southeast Asia (Ed. by A.J.Fraser , S.J.Matthews & R.W.Murphy ), Geol. Soc. Lond. Spec. Publ., 126, 341–353.
    [Google Scholar]
  49. Roques, D., Rangin, C. & Huchon, P. (1997b) Geometry and sense of motion along the Vietnam continental margin: onshore/offshore Da Nang area. Bull. Soc. Geol. France, 168, 413–422.
    [Google Scholar]
  50. Rudolph, K.W. & Lehmann, P.J. (1989) Platform evolution and sequence stratigraphy of the Natuna Platform, south China Sea. In: Controls on Carbonate Platform and Basin Development (Ed. by P.D.Crevello , J.L.Wilson , J.F.Sarg & J.F.Read ), SEPM Spec. Publ., 44, 353–361.
    [Google Scholar]
  51. Sanders, D. & Baron‐Szabo, R.C. (2005) Scleractinian assemblages under sediment input: their characteristics and relation to the nutrient input concept. Palaeogeogr. Palaeoclimatol. Palaeoecol., 216, 139–181.
    [Google Scholar]
  52. Schlager, W. (1981) The paradox of drowned reefs and carbonate platforms. Geol. Soc. Am. Bull., 92 (Part 1), 197–211.
    [Google Scholar]
  53. Schlager, W. (1992) Sedimentology and sequence stratigraphy of reefs and carbonate platforms. AAPG, Continuing Education Course Note Series, 34, 71 pp.
    [Google Scholar]
  54. Schlager, W. (2000) Sedimentation rates and growth potential of tropical, cool‐water and mud‐moun carbonate systems. In: Carbonate Platform Systems: Components and Interactions (Ed. by E.Insalaco , P.W.Skelton & T.J.Palmer ), Geol. Soc. Lond. Spec. Publ., 178, 217–227.
    [Google Scholar]
  55. Scoffin, T.P. (1993) The geological effects of hurricanes on coral reefs and the interpretation of storm deposits. Coral Reefs, 12, 203–221.
    [Google Scholar]
  56. Taylor, B. & Hayes, D.E. (1980) The tectonic evolution of the South China Basin. In: The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands. Part 1 (Ed. by D.E.Hayes ), Geophys. Monogr., 23 pp. 89–104. AGU, Washington, DC.
    [Google Scholar]
  57. Taylor, B. & Hayes, D.E. (1983) Origin and history of the South China Sea Basin. In: The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands. Part 2 (Ed. by D.E.Hayes , Geophys. Monogr., 27 pp. 23–56. AGU, Washington, DC.
    [Google Scholar]
  58. Tyrrell, W.W.Jr. & Christian, H.E.Jr. (1992) exploration history of Lihua 11‐1 field, Pearl river Mouth Basin, China. AAPG Bull., 76, 1209–1223.
    [Google Scholar]
  59. Vahrenkamp, V.C., David, F., Duijndam, P., Newall, M. & Crevello, P. (2004) Growth architecture, faulting and karstification of a middle Miocene carbonate platform, Luconia province, offshore Sarawak, Malaysia. In: Seismic Imaging of Carbonate Reservoirs and Systems (Ed. by G.P.Eberli , J.L.Masaferro & J.F.R.Sarg ), AAPG Mem., 81, 329–350.
    [Google Scholar]
  60. Wan, S., Li, A., Clift, P.D. & Jiang, H. (2006) Development of the East Asian summer monsoon: evidence from the sediment record in the South China Sea since 8.5 Ma. Palaeogeogr. Palaeoclimatol. Palaeoecol., 241, 139–159.
    [Google Scholar]
  61. Wilson, M., Bosence, D.W.J & Limbong, A. (2000) Tertiary syntectonic carbonate platform development in Indonesia. Sedimentology, 47, 395–419.
    [Google Scholar]
  62. Wilson, M. & Lokier, S.W. (2002) Siliciclastic and Volcaniclastic influence on equatorial carbonates: insight from the Neogene of Indonesia. Sedimentology, 49, 583–601.
    [Google Scholar]
  63. Xie, S.‐P., Chang, C.‐H., Xie, Q. & Wang, D. (2007) Intraseasonal variability in the summer South China Sea: wind jet, cold filament, and recirculations. J. Geophys. Res., 112, 1–11.
    [Google Scholar]
  64. Xie, S.‐P., Xie, Q., Wang, D. & Liu, W.T. (2003) Summer upwelling in the South China sea and its role in regional climate variations. J. Geophys. Res., 108, 1–13.
    [Google Scholar]
  65. Xu, H., Xie, S‐P., Wang, Y., Zhuang, W. & Wang, D. (2007) Orographic effects on South China Sea summer climate. In: Assimilation of Remote Sensing and in Situ Data in Modern Numerical Weather and Environmental Prediction Models (Ed. by X.Zou , D.Barker & F.‐X.Le Dimet ), Proc. SPIE , 6685, 66850K, 1–12.
    [Google Scholar]
  66. Zampetti, V., Sattler, U. & Braaksma, H. (2005) Well log and seismic character of Liuhua 11‐1 Field, South China sea; relationship between diagenesis and seismic reflections. Sediment. Geol., 175, 217–236.
    [Google Scholar]
  67. Zampetti, V., Schlager, W., Konijnenburg, J.‐H. & Everts, A.‐J. (2004) Architecture and growth history of a Miocene carbonate platform from 3D seismic reflection data; Luconia province, offshore Sarawak, Malaysia. Mar. Petrol. Geol., 21, 517–534.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2008.00380.x
Loading
/content/journals/10.1111/j.1365-2117.2008.00380.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error