1887
Volume 21, Issue 1
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

Lower Cretaceous early syn‐rift facies along the eastern flank of the Eastern Cordillera of Colombia, their provenance, and structural context, reveal the complex interactions between Cretaceous extension, spatio‐temporal trends in associated sedimentation, and subsequent inversion of the Cretaceous Guatiquía paleo‐rift. South of 4°30′N lat, early syn‐rift alluvial sequences in former extensional footwall areas were contemporaneous with fan‐delta deposits in shallow marine environments in adjacent hanging‐wall areas. In general, footwall erosion was more pronounced in the southern part of the paleorift. In contrast, early syn‐rift sequences in former footwall areas in the northern rift sectors mainly comprise shallow marine supratidal sabkha to intertidal strata, whereas hanging‐wall units display rapid transitions to open‐sea shales. In comparison with the southern paleo‐rift sector, fan‐delta deposits in the north are scarce, and provenance suggests negligible footwall erosion. The southern graben segment had longer, and less numerous normal faults, whereas the northern graben segment was characterized by shorter, rectilinear faults. To the east, the graben system was bounded by major basin‐margin faults with protracted activity and greater throw as compared with intrabasinal faults to the west. Intrabasinal structures grew through segment linkage and probably interacted kinematically with basin‐margin faults. Basin‐margin faults constitute a coherent fault system that was conditioned by pre‐existing basement fabrics. Structural mapping, analysis of present‐day topography, and balanced cross sections indicate that positive inversion of extensional structures was focused along basin‐bounding faults, whereas intrabasinal faults remained unaffected and were passively transported by motion along the basin‐bounding faults. Thus, zones of maximum subsidence in extension accommodated maximum elevation in contraction, and former topographic highs remained as elevated areas. This documents the role of basin‐bounding faults as multiphased, long‐lived features conditioned by basement discontinuities. Inversion of basin‐bounding faults was more efficient in the southern than in the northern graben segment, possibly documenting the inheritance and pivotal role of fault‐displacement gradients. Our observations highlight similarities between inversion features in orogenic belts and intra‐plate basins, emphasizing the importance of the observed phenomena as predictive tools in the spatiotemporal analysis of inversion histories in orogens, as well as in hydrocarbon and mineral deposits exploration.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2008.00367.x
2008-09-01
2024-03-28
Loading full text...

Full text loading...

References

  1. Alsharhan, A.S. & Kendall, C.G.St.C. (2003) Holocene coastal carbonates and evaporites of the southern Arabian Gulf and their ancient analogues. Earth Science Rev., 61, 191–243.
    [Google Scholar]
  2. Badley, M.E. (2001) Late tertiary faulting, footwall uplift and topography in Western Ireland. In: The Petroleum Exploration of Ireland's Offshore Basins (Ed. by P.M.Shannon , P.D.W.Haughton & D.V.Corcoran , Geol. Soc. Spec. Publ., 188, 201–207.
    [Google Scholar]
  3. Bailey, C.M., Giorgis, S. & Coiner, L. (2002) Tectonic inversion and basement butressing: an example from the central Appalachian Blue Ridge Province. J. Struct. Geol., 24, 277–304.
    [Google Scholar]
  4. Beauchamp, W., Allmendinger, R.W., Barazangi, M., Demnati, A., El Alji, M. & Dahmani, M. (1999) Inversion tectonics and the evolution of the High Atlas Mountains, Morocco, based on a geological‐geophysical transect. Tectonics, 18, 163–184.
    [Google Scholar]
  5. Blair, C.T. & McPherson, J.G. (1998) Recent debris‐flow processes and resultant form and facies of the dolomite alluvial fan, Owens Valley, California. J. Sediment. Res., 68, 800–818.
    [Google Scholar]
  6. Boyer, S.E. & Elliot, D. (1982) Thrust systems. AAPG Bulletin, 66, 1196–1230.
    [Google Scholar]
  7. Bürgl, H. (1961) El Jurásico e Infracretáceo del Río Batá, Boyacá. Bol. Geol. Inst. Geol. Nac., 6, 169–211.
    [Google Scholar]
  8. Carrera, N., Muñoz, J.A., Sàbat, F., Mon, R. & Roca, E. (2006) The role of inversion tectonics in the structure of the Cordillera Oriental (NW Argentinean Andes). J. Struct. Geol., 18, 1921–1932.
    [Google Scholar]
  9. Cartwright, J.A. (1989) The kinematics of inversion in the Danish Central Graben. In: Inversion Tectonics (Ed. by M.A.Cooper & G.D.Williams ), Geol. Soc. Spec. Publ., 44, 153–175.
    [Google Scholar]
  10. Cartwright, J.A., Trudgill, B.D. & Mansfield, C.S. (1995) Fault growth by segment linkage: an explanation for scatter in maximum displacement and trace length data from the Canyonlands grabens of SE Utah. J. Struct. Geol., 17, 1319–1326.
    [Google Scholar]
  11. Chapman, T.J. (1989) The Permian to Cretaceous structural evolution of the Western Approaches Basin (Melville sub‐basin), UK. In: Inversion Tectonics (Ed. by M.A.Cooper & G.D.Williams ), Geol. Soc. Spec. Publ., 44, 177–200.
    [Google Scholar]
  12. Colletta, B., Hebrard, F., Letouzey, J., Werner, P. & Rudkiweicz, J.L. (1990) Tectonic style and crustal structure of the Eastern Cordillera, Colombia from a balanced cross section. In: Petroleum and Tectonics in Mobile Belts (Ed. by J.Letouzey ), pp. 81–100. Editions Technip, Paris.
    [Google Scholar]
  13. Collinson, J.D. (1996) Alluvial sediments. In: Sedimentary Environments: Processes, Facies and Stratigraphy (Ed. by H.G.Reading ), pp. 37–82. Blackwell Science, Oxford.
    [Google Scholar]
  14. Coward, M.P., Enfield, M.A. & Fischer, M.W. (1989) Devonian basins of Northern Scotland: extension and inversion related to Late Caledonian‐Varisican tectonics. In: Inversion Tectonics (Ed. by M.A.Cooper & G.D.Williams , Geol. Soc. Spec. Publ., 44, 275–308.
    [Google Scholar]
  15. Cowie, P.A., Gupta, S. & Dawers, N.H. (2000) Implications of fault array evolution for synrift depocentre development: insights from a numerical fault growth model. Basin Res., 12, 241–261.
    [Google Scholar]
  16. Dalrymple, R.W. & Choi, K. (2007) Morphologic and facies trends through the fluvial‐marine transition in tide‐dominated depositional systems: a schematic framework for environmental and sequence-stratigraphic interpretation. Earth Sci. Rev., 81, 135–174.
    [Google Scholar]
  17. Davis, D., Suppe, J. & Dahlen, F.A. (1983) Mechanics of fold‐and‐thrust belts and accretionary wedges. J. Geophys. Res., 88, 1153–1172.
    [Google Scholar]
  18. Dawers, N.H. & Anders, M.H. (1995) Displacement‐length scaling and fault linkage. J. Struct. Geol., 17, 607–614.
    [Google Scholar]
  19. Dorado, J. (1992) Contribución al conocimiento de la Estratigrafía de la formación Brechas de Buenavista (límite Jurásico‐Cretácico), región noroeste de Villavicencio (Meta). Geol. Colombiana, 17, 7–40.
    [Google Scholar]
  20. Dueñas, H. (2002) Paleozoic palynological assemblages from the Colombian Llanos Basin. 34th. Annual Meeting of the American Association of Stratigraphic Palynologists, 2001, San Antonio, Texas. Palynology, 26, p. 264.
  21. Eisenstadt, G. & Withjack, M.O. (1995) Estimating inversion: results from clay models. In: Basin Inversion (Ed. by J.G.Buchanan & P.G.Buchanan , Geol. Soc. Spec. Publ., 88, 119–136.
    [Google Scholar]
  22. Etayo‐Serna, F., Solé‐De Porta, N.S., De Porta, J. & Gaona, T. (2003) The Batá formation of Colombia is truly Cretaceous, not Jurassic. J. South Am. Earth Sci., 16, 113–117.
    [Google Scholar]
  23. Forero‐Suarez, A. (1990) The basement of the Eastern Cordillera, Colombia: an allochthonous terrane in northwestern South America. J. South Am. Earth Sci., 3, 141–151.
    [Google Scholar]
  24. Fürsich, F.T. (1995) Shell concentrations. Eclogae Geol. Helv., 88, 643–655.
    [Google Scholar]
  25. Galloway, W.E. & Hobday, D.K. (1996) Terrigenous Clastic Depositional Systems: Applications to Fossil Fuel and Groundwater Resources, 2nd edn. Springer, Berlin.
    [Google Scholar]
  26. García Senz, J. (2002) Cuencas extensivas del Cretácico Inferior en los Pirineos centrales: formación y subsecuente inversión. PhD Thesis, Universitat de Barcelona, Barcelona.
  27. Gawthorpe, R.L. & Leeder, M.R. (2000) Tectono‐sedimentary evolution of active extensional basins. Basin Res., 12, 195–218.
    [Google Scholar]
  28. Gemmer, L., Nielsen, S.B. & Bayer, U. (2003) Late Cretaceous‐Cenozoic evolution of the North German basin‐results from 3‐D geodynamic modelling. Tectonophysics, 373, 39–54.
    [Google Scholar]
  29. Geostratos
    Geostratos (2005) Columna estratigráfica Río Chivor, Ingeominas. Bogotá, Colombia. Internal Report, 21p.
  30. Geyer, O.F. (1973) Das präkretazische Mesozoikum von Kolumbien. Geol. Jahrbuch B, 5, 1–155.
    [Google Scholar]
  31. Gillcrist, R., Coward, M. & Mugnier, J.‐L. (1987) Structural inversion and its controls: examples from the Alpine foreland and the French Alps. Geodinam. Acta, 1, 5–34.
    [Google Scholar]
  32. Graciansky, P.C.D., Dardeau, G., Lemoine, M. & Tricart, P. (1989) The inverted margin in the French Alps and foreland basin inversion. In: Inversion Tectonics (Ed. by M.A.Cooper & G.D.Williams , Geol. Soc. Spec. Publ., 44, 87–104.
    [Google Scholar]
  33. Grier, M.E., Salfity, J.A. & Allmendinger, R.W. (1991) Andean reactivation of the Cretaceous Salta Rift, northwestern Argentina. J. South Am. Earth Sci., 4, 351–372.
    [Google Scholar]
  34. Guimera, J., Alonso, A. & Ramon Mas, J. (1995) Inversion of an extensional‐ramp basin by a newly formed thrust: the Cameros Basin (N. Spain). In: Basin Inversion (Ed. by J.G.Buchanan & P.G.Buchanan , Geol. Soc. Spec. Publ., 88, 433–453.
    [Google Scholar]
  35. Gupta, S., Underbill, J.R., Sharp, I.R. & Gawthorpe, R.L. (1999) Role of fault interactions in controlling synrift sediment dispersal patterns: Miocene, Abu Alaqa Group, Suez Rift, Sinai, Egypt. Basin Res., 11, 167–189.
    [Google Scholar]
  36. Hayward, A.B. & Graham, R.H. (1989) Some geometrical characteristics of inversion. In: Inversion Tectonics (Ed. by M.A.Cooper & G.D.Williams , Geol. Soc. Spec. Publ., 44, 17–39.
    [Google Scholar]
  37. Hilley, G.E., Blisniuk, P.M. & Strecker, M.R. (2005) Mechanics and erosion of basement cored uplift provinces. J. Geophys. Res., Solid Earth, 110, B12409, doi: DOI: 10.1029/2005JB0003704, 2005.
    [Google Scholar]
  38. Huyghe, P. & Mugnier, J.‐L. (1995) A comparison of inverted basins of the southern North Sea and inverted structures of the external Alps. In: Basin Inversion (Ed. by J.G.Buchanan & P.G.Buchanan , Geol. Soc. Spec. Publ., 88, 339–353.
    [Google Scholar]
  39. Ingram, R.L. (1954) Terminology for the thickness of stratification and parting units in sedimentary rocks. Geol. Soc. Am. Bull., 65, 937–938.
    [Google Scholar]
  40. Jackson, J. & McKenzie, D. (1983) The geometrical evolution of normal fault systems. J. Struct. Geol., 5, 471–482.
    [Google Scholar]
  41. Kalkowsky, E. (1908) Oolith und stromatholit im norddeutschen Buntsandstein. Z. Deut. Geol. Gesellsch., 60, 68–125.
    [Google Scholar]
  42. Kendall, A.C. & Harwood, G.M. (1996) Marine evaporites: arid shorelines and basins. In: Sedimentary Environments: Processes, Facies and Stratigraphy (Ed. by H.G.Reading ), pp. 281–324. Blackwell Science, Oxford.
    [Google Scholar]
  43. Kley, J. & Monaldi, C.R. (2002) Tectonic inversion in the Santa Barbara System of the central Andean foreland thrust belt, northwestern Argentina. Tectonics, 21, 1061, doi: DOI: 10.1029/2002TC902003.
    [Google Scholar]
  44. Kley, J., Rossello, E.A., Monaldi, C.R. & Habighorst, B. (2005) Seismic and field evidence for selective inversion of Cretaceous normal faults, Salta rift, northwest Argentina. Tectonophysics, 399, 155–172.
    [Google Scholar]
  45. Kossow, D., Krawczyk, C., McCann, T., Strecker, M. & Negendank, J.F.W. (2000) Style and evolution of salt pillowsand related structures in the northern part of the Northest German Basin. Int. J. Earth Sci., 89, 652–664.
    [Google Scholar]
  46. Kossow, D. & Krawczyk, C.M. (2002) Structure and quantification of processes controlling the evolution of the inverted NE‐German Basin. Mar. Petrol. Geol., 19, 601–618.
    [Google Scholar]
  47. Logan, B.W., Rezak, R. & Ginsburg, R.N. (1964) Classification and environmental significance of algal stromatolites. J. Geol., 72, 68–83.
    [Google Scholar]
  48. Lowell, J.D. (1995) Mechanics of basin invesion from wolrdwide examples. In: Basin Inversion (Ed. by J.G.Buchanan & P.G.Buchanan . Geol. Soc. Lond. Spec. Publ., 88, 339–353.
    [Google Scholar]
  49. McClay, K.R. (1995) The geometries and kinematics of inverted fault systems: a review of analogue model studies. In: Basin Inversion (Ed. by J.G.Buchanan & P.G.Buchanan , Geol. Soc. Spec. Publ., 88, 97–118.
    [Google Scholar]
  50. Miall, A.1985Architectural‐ element analysis: a new method for facies analysis applied to fluvial deposits. Earth Sci. Rev., 22, 261–238.
    [Google Scholar]
  51. Miall, A.D. (1996) The Geology of Fluvial Deposits: Sedimentary facies, Basin Analysis, and Petroleum Geology. Springer, New York.
    [Google Scholar]
  52. Mitra, S. (1993) Geometry and kinematic evolution of inversion structures. Am. Assoc. Petrol. Geol. Bull., 77, 1159–1191.
    [Google Scholar]
  53. Monaldi, C.R., Salfity, J.A. & Kley, J. (2008) Preserved extensional structures in an inverted Cretaceous rift basin, nothwestern Argentina: outcrop examples and implications for fault reactivation. Tectonics, 27, TC1011, doi: DOI: 10.1029/2006TC001993.
  54. Mora, A., Parra, M., Strecker, M.R., Kammer, A., Dimaté, C. & Rodríguez, F. (2006) Cenozoic contractional reactivation of Mesozoic extensional structures in the Eastern Cordillera of Colombia. Tectonics, 25, TC2010, doi: DOI: 10.1029/2005TC001854.
    [Google Scholar]
  55. Nemcok, M., Nemcok, J. & Wojtaszek, M. (2001) Recosntruction of Cretaceous rifts incorporated in the Outer West Carpathian wedge by balancing. Mar. Petrol. Geol., 18, 39–63.
    [Google Scholar]
  56. Nemec, W. & Postma, G. (1993) Quaternary alluvial fans in southwestern Crete: sedimentation processes and geomorphic evolution. In: Alluvial Sedimentation (Ed. by M.Marzo & C.Puidgefabregas , Int. Assoc. Sedimentol. Spec. Publ., 17, 235–276.
    [Google Scholar]
  57. Parra, M. (2000) Estratigrafía y Petrografía del Cretácico Inferior en el Parque Natural Chingaza y la Cuenca Alta del Río Guatiquía, Cundinamarca y Meta, Colombia. B.Sc. Thesis, Universidad Nacional de Colombia, Bogotá.
  58. Paton, D.A. & Underhill, J.R. (2004) Role of crustal anisotropy in modifying the structural and sedimentological evolution of extensional basins: The Gamtoos Basin, South Africa. Basin Res., 16, 339–359.
    [Google Scholar]
  59. Prösser, S. (1993) Rift‐related linked depositional systems and their seismic expression. In: Tectonics and Seismic Sequence Stratigraphy (Ed. by G.D.Williams & A.Dobb , Geol. Soc. Spec. Publ., 71, 35–66.
    [Google Scholar]
  60. Reading, H.G. & Collinson, J.D. (1996) Clastic coasts. In: Sedimentary Environments: Processes, Facies and Stratigraphy (Ed. by H.G.Reading ), pp. 154–231. Blackwell Science, Oxford.
    [Google Scholar]
  61. Riding, R. (2000) Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology, 47, 179–214.
    [Google Scholar]
  62. Rincón, A. & Támara, J. (2005) La Falla de Mirados y su significado para la sedimentación del Titoniano‐Neocomiano (Villavicenciio, Colombia). BSc Thesis, Universidad Nacional de Colombia, Bogotá.
  63. Roberts, A.M. & Yielding, G. (1991) Deformation around basin‐margin faults in the North Sea/mid‐Norway rift. In: The Geometry of Normal Faults (Ed. by A.M.Roberts , G.Yielding & B.Freeman , Geol. Soc. Spec. Publ., 56, 61–78.
    [Google Scholar]
  64. Roberts, A.M., Yielding, G. & Badley, M.E. (1993) Tectonics and bathymetric controls on stratigraphic sequences within evolving half‐graben. In: Tectonics and Seismic Sequence Stratigraphy (Ed. by G.D.Williams & A.Dobb , Geol. Soc. Spec. Publ., 87–121.
    [Google Scholar]
  65. Roeder, D. & Chamberlain, R.L. (1995) Eastern Cordillera of Colombia: Jurassic‐Neogene crustal evolution. In: Petroleums Basins of South America (Ed. by A.J.Tankard , S.R.Suarez & H.J.Welsink , Am. Assoc. Petrol. Geol. Memoir , 62, 633–645.
    [Google Scholar]
  66. Roessner, S. & Strecker, M.R. (1997) Late Cenozoic tectonics and denudation in the Central Kenya Rift: quantification of long-term denudation rates. Tectonophysics, 278, 83–94.
    [Google Scholar]
  67. Rust, B. & Koster, E. (1984) Coarse alluvial deposits. In: Facies Models, Geoscience Canada Reprint Series, 1. (Ed. by R.Walker ) Geological Association of Canada, Toronto.
    [Google Scholar]
  68. Sarmiento‐Rojas, L.F., Van Wess, J.D. & Cloetingh, S. (2006) Mesozoic transtensional basin history of the Eastern Cordillera, Colombian Andes: inferences from tectonic models. J. South Am. Earth Sci., 21, 383–411.
    [Google Scholar]
  69. Seyferth, M. & Henk, A. (2006) A numerical sandbox: high resolution distinct element models of halbgraben formation. Int. J. Earth Sci., 95, 189–203.
    [Google Scholar]
  70. Shanmugam, G. (1997) The Bouma sequence and the turbidite mind set. Earth-Sci. Rev., 42, 201–229.
    [Google Scholar]
  71. Sinclair, I.K. (1995) Transpressional inversion due to episodic rotation of extensional stresses in the Jeanne d' Arc Basin, offshore Newfoundland. In: Basin Inversion (Ed. by J.G.Buchanan & P.G.Buchanan , Geol. Soc. Spec. Publ., 88, 249–271.
    [Google Scholar]
  72. Stibane, F.R.
    , ed. (1968) Zur Geologie von Kolumbien, Südamerika: Das Quetame‐ und Garzon‐Massiv. Geotektonische Forschungen. E. Schweizerbart, Stuttgart.
    [Google Scholar]
  73. Teixell, A., Arboleya, M.‐L., Julivert, M. & Charroud, M. (2003) Tectonic shortening and topography in the central High Atlas (Morocco). Tectonics, 22, 1051, doi: DOI: 10.1029/2002TC001460.
    [Google Scholar]
  74. Thomas, D.W. & Coward, M.P. (1995) Late Jurassic‐Early Cretaceous inversion of the northern East Shetland Basin, northern North Sea. In: Basin Inversion (Ed. by J.G.Buchanan & P.G.Buchanan , Geol. Soc. Spec. Publ., 88, 275–306.
    [Google Scholar]
  75. Trudgill, B. & Cartwright, J. (1994) Relay‐ramp forms and normal‐fault linkages, Canyonlands National Park, Utah. Geol. Soc. Am. Bull., 106, 1143–1157.
    [Google Scholar]
  76. Tucker, M.E. & Wright, V.P. (1990) Carbonate Sedimentology. Blackwell Scientific Publications, Oxford.
    [Google Scholar]
  77. Uliana, M.A., Arteaga, M.E., Legarreta, L., Cerdán, J.J. & Peroni, G.O. (1995) Inversion structures and hydrocarbon ocurrence in Argentina. In: Basin Inversion (Ed. by J.G.Buchanan & P.G.Buchanan . Geol. Soc., Lond . 88, 211–233.
    [Google Scholar]
  78. Ulloa, C. & Rodríguez, E. (1979) Geología del Cuadrángulo K12, Guateque. Bol. Geol. Ingeom., 22, 3–55.
    [Google Scholar]
  79. Underhill, J.R. & Paterson, S. (1998) Genesis of tectonic inversion structures: seismic evidence for the development of key structures along the Purbeck-Isle of wight disturbance. J. Geol. Soc., 155, 975–992.
    [Google Scholar]
  80. Walsh, J.J., Bailey, W.R., Childs, C., Nicol, A. & Bonson, C.G. (2003) Formation of segmented normal faults: a 3-D perspective. J. Struct. Geol., 25, 1251–1262.
    [Google Scholar]
  81. Walsh, J.J., Nicol, A. & Childs, C. (2002) An alternative model for the growth of faults. J. Struct. Geol., 24, 1669–1675.
    [Google Scholar]
  82. Warren, J.K. & Kendall, C.G.S.C. (1985) Comparison of sequences formed in marine sabkha (subaerial) and salina (subaqueous) settings: modern and ancient. Am. Assoc. Petrol. Geol. Bull., 69, 1013–1023.
    [Google Scholar]
  83. Williams, G.D., Powell, C.M. & Cooper, M.A. (1989) Geometry and kinematics of inversion tectonics. In: Inversion Tectonics (Ed. by M.A.Cooper & G.D.Williams , Geol. Soc. Spec. Publ., 44, 3–15.
    [Google Scholar]
  84. Withjack, M.O., Islam, Q.T. & La Pointe, P.R. (1995) Normal faults and their hanging‐wall deformation: an experimental study. Am. Assoc. Petrol. Geol. Bull., 79, 1–18.
    [Google Scholar]
  85. Yamada, Y. & McClay, K.R. (2004) Analog modeling of inversion thrust structures: experiments of 3D inversion structures above listric fault systems. In: Thrust Tectonics and Petroleum Systems (Ed. by K.R.McClay ), Am. Assoc. Petrol. Geol. Memoir , 82, 276–302.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2008.00367.x
Loading
/content/journals/10.1111/j.1365-2117.2008.00367.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error