1887
Volume 20, Issue 3
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

Exceptional exposure of the forearc region of NW Peru offers insight into evolving convergent margins. The sedimentary fill of the Talara basin spans the Cretaceous to the Eocene for an overall thickness of 9000 m and records within its stratigraphy the complicated history of plate interactions, subduction tectonics, terrane accretion, and Andean orogeny. By the early Tertiary, extensional tectonism was forming a complex horst and graben system that partitioned the basin into a series of localized depocentres. Eocene strata record temporal transitions from deltaic and fluvial to deep‐water depositional environments as a response to abrupt, tectonically controlled relative sea‐level changes across those depocentres. Stratigraphic and provenance data suggest a direct relationship between sedimentary packaging and regional tectonics, marked by changes in source terranes at major unconformities. A sharp shift is recognized at the onset of deepwater (bathyal) sedimentation of the  Talara Formation, whose sediments reflect an increased influx of mafic material to the basin, likely related to the arc region. Although the modern topography of the Amotape Mountains partially isolates the Talara basin from the Lancones basin and the Andean Cordillera to the east, provenance data suggest that the Amotape Mountains were not always an obstacle for Cordilleran sediment dispersal. The mountain belt intermittently isolated the Talara basin from Andean‐related sediment throughout the early  Tertiary, allowing arc‐related sediment to reach the basin only during periods of subsidence in the forearc region, probably related to plate rearrangement and/or seamounts colliding with the trench. Intraplate coupling and/or partial locking of subduction plates could be among the major causes behind shifts from contraction to extension (and enhanced subduction erosion) in the forearc region. Eventually, collisional tectonic and terrane accretion along the Ecuadorian margin forced a major late‐Eocene change in sediment dispersal.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2007.00346.x
2008-01-15
2024-03-28
Loading full text...

Full text loading...

References

  1. Arculus, R.J., Lapierre, H. & Jaillard, E. (1999) Geochemical window into subduction and accretion processes: Raspas metamorphic complex, Ecuador. Geology, 27 (6), 547–550.
    [Google Scholar]
  2. Aspden, J.A., Fortey, N., Litherland, M., Viteri, F. & Harrison, S.M. (1992) Regional S‐type granites in the Ecuadorian Andes: possible remnants of the break-up of western Gondwana. J. South Am. Earth Sci., 6, 123–132.
    [Google Scholar]
  3. Aspden, J.A. & Litherland, M. (1992) The geology and Mesozoic collisional history of the Cordillera Real, Ecuador. Tectonophysics, 205, 187–204.
    [Google Scholar]
  4. Bellido, B.E. (1969) Synopsis de la Geologia del Peru. Serv. Geol. Miner., Peru, Boletin, 22, 1–54 (in Spanish).
    [Google Scholar]
  5. Benavides‐Caceres, V. (1999) Orogenic evolution of the Peruvian Andes; the Andean Cycle. In: Geology and Ore Deposits of the Central Andes (Ed. by B.J.Skinner ), Spec. Publ.–Soc. Econ. Geol., 7, 61–107.
    [Google Scholar]
  6. Berggren, W.A., Kent, D.V., SwicherIII, C.C. & Aubry, M.P. (1995) A revised cenozoic geochronology and chronostratigraphy. In: Geochronology, Time Scales and Global Stratigraphic Correlation (Ed. by W.A.Berggren , D.V.Kent , M.P.Aubry & J.Hardenbol ), Soc. Sediment. Geol., Spec. Publ . 54, 129–212.
    [Google Scholar]
  7. Bernal, I., Tavera, H. & Antayhua, Y. (2002) Zonas sismogenica en el Peru: volumenes de informacion, graficos polares y zonificacion preliminary. Bol. Soc. Geol. Peru, 93, 31–44.
    [Google Scholar]
  8. Bosworth, T.O. (1922) Geology of the Tertiary and Quaternary Periods in the Northwest Part of Peru. Macmillan and Company, London, UK, 434pp.
    [Google Scholar]
  9. Bouma, A.H. (1962) Sedimentation of Some Flysch Deposits. Elsevier, Amsterdam, 168pp.
    [Google Scholar]
  10. Bourgois, J., Bigot‐Cormier, F., Bourles, D., Braucher, R., Dauteuil, O., Witt, C. & Michaud, F. (2007) Tectonic record of strain buildup and abrupt co‐seismic stress release across the northwestern Peru coastal plain, shelf, and continental slope during the past 200 kyr. J. Geophys. Res., 112, BO4104, doi: DOI: 10.1029/2006JB004491.
    [Google Scholar]
  11. Bush, V.A., Vinogradov, L.D. & Titov, A.I. (1994) Tectonic breccia and thrust tectonic of the tertiary deposits in northwestern Peru. Geotectonic (English translation), 28, 159–167.
    [Google Scholar]
  12. Caldas, J., Palacios, O., Pecho, V. & Vela, C. (1980) Geologia de los Cuadrangulos de: Bayovar, Sechura, La Retonda, Pta. la Negra, Lobos de Tierra, Las Salinas y Morrope. Inst. Geolog. Miner. Metal. Bol., Ser. A, 32, 1–78.
    [Google Scholar]
  13. Carozzi, A.V. & Palomino, J.R. (1993) The Talara forearc basin: depositional models of oil-producing Cenozoic clastic systems. J. Petrol. Geol., 16 (1), 5–32.
    [Google Scholar]
  14. Chew, D.M., Scheltegger, U., Košler, J., Whitehouse, M.J., Gutjahr, M., Spikings, R.A. & Miškovic, A. (2007) U‐Pb geochronologic evidence for the evolution of the Gondwanan margin of the north‐central Andes. Geol. Soc. Am. Bull., 119, 697–711.
    [Google Scholar]
  15. Clift, P.D., Pecher, I., Hutt, L., Kukowski, N. & Hampel, A. (2003) Tectonic erosion of the Peruvian forearc, Lima Basin, by subduction and Nazca Ridge collision. Tectonics, 22, 1023.
    [Google Scholar]
  16. Clift, P.D. & Vannucchi, P. (2004) Controls on tectonic accretion versuserosion in subduction zones: implications for the origin and recycling of the continental crust. Rev. Geophys., 42, RG20001, doi: DOI: 10.1029/2003RG000127.
    [Google Scholar]
  17. Cullers, R., DiMarco, M., Lowe, D.R. & Stone, J. (1993) Geochemistry of a silicified, felsic volcanic suite from the early Archean Panorama Formation, Pilbara Block, western Australia; an evaluation of depositional and post‐depositional processes with special emphasis on the rare‐earth elements. In: Archean and Early Proterozoic Geology of the Pilbara region, Western Australia (Ed. by T.Blake & A.Meakins ), Precambr. Res., 60, 1–4, 99–116.
    [Google Scholar]
  18. Daudt, J.A., Grosso, S. & Sullivan, M.D. (2004) Sea‐level changes and tectonic influence in the deposition of the Cabo Blanco Member: example of an Eocene fluvio-estuarine system in Talara basin, NW Peru. Bol. Soc. Geol. Peru, 97, 67–80.
    [Google Scholar]
  19. DeVries, T.J. (1988) The geology of late Cenozoic marine terraces (tablazos) in northwestern Peru. J. South Am. Earth Sci., 1, 121–136.
    [Google Scholar]
  20. Dickinson, W.R. (1970) Interpreting detrital modes of greywacke and arkose. J. Sediment. Petrol., 40, 695–707.
    [Google Scholar]
  21. Dickinson, W.R. (1985) Interpreting provenance relations from detrital modes of sandstones. In: Provenance of Arenites (Ed. by G.Zuffa ), pp. 333–361. D. Reidel, Dordrecht.
    [Google Scholar]
  22. Dickinson, W.R. (1995) Forearc basins. In: Tectonics of Sedimentary Basins (Ed. by C.J.Busby & R.V.Ingersoll ), pp. 221–261. Blackwell Scientific Publications, Oxford.
    [Google Scholar]
  23. Duerichen, E. (2005) Sedimentology and architecture of upper Eocene deep‐water deposits, Talara basin, NW Peru. PhD Thesis, Stanford University.
  24. Dunbar, R.B., Marty, R.C. & Baker, P.A. (1990) Cenozoic marine sedimentation on the Sechura and Pisco basins, Peru. Palaeogeogr. Palaeoclimatol. Palaeoecol., 77, 235–261.
    [Google Scholar]
  25. Feininger, T. (1987) Allochthonous terranes in the Andes of Ecuador and northwestern Peru. Can. J. Earth Sci., 24, 266–278.
    [Google Scholar]
  26. Fildani, A. (2004) Analysis of two arc‐associated basins and onset of their deep‐water stages: Magallanes basin, Chile, and Talara Basin. Peru. PhD Thesis, Stanford University, Stanford, California, p. 375.
  27. Fildani, A., Hanson, A.D., Chen, Z., Moldowan, M.J., Graham, S.A. & Arriola, P.R. (2005) Talara basin petroleum system: geochemical characteristics of oils and correlation with possible source rocks from NW Peru. Am. Assoc. Petrol. Geol. Bull., 89, 1519–1545.
    [Google Scholar]
  28. Gonzales, G. (1976) Ciclo de sedimentation en el Eocene de la cuenca Talara. Bol. Soc. Geol. Perú, 51, 73–80.
    [Google Scholar]
  29. Gutierrez, F.E. & Arriola, I.P. (2002) Analisis estratigrafico de los ciclos Talara‐Verdun para la generacion de nuevas oportunidades–Yacimento Carrizo–Cuenca Talara–Peru. INGEPET, EXPR‐3‐FG‐33. (Extended Abstract, non peer reviewed, in Spanish).
  30. Gutscher, M.A., Malavieille, J., Lallemand, S. & Collot, J.‐Y. (1999a) Tectonic segmentation of the North Andean margin: impact of the Carnegie Ridge collision. Earth Planet. Sci. Lett., 168, 255–270.
    [Google Scholar]
  31. Gutscher, M.A., Olivet, J.L., Aslanian, D., Eissen, J.P. & Maury, R. (1999b) The “lost Inca Plateau”: cause of flat subduction beneath Peru? Earth Planet. Sci. Lett., 171, 335–341.
    [Google Scholar]
  32. Hardenbol, J., Thierry, J., Farley, M.B., Jacquin, T., De Graciansky, P.C. & Vail, P.R. (1998) Mesozoic‐Cenozoic sequence chronostratigraphic chart. In: Mesozoic and Cenozoic Sequence Stratigraphy of European Basins (Ed. by P.C.De Graciansky , J.Hardenbol , T.Jacquin , P.R.Vail & M.B.Farley ), SEPM Spec. Publ., 60 (charts).
    [Google Scholar]
  33. Hessler, A.M. & Lowe, D.R. (2006) Weathering and sediment generation in the Archean: An integrated study of the evolution of siliciclastic sedimentary rocks of the 3.2 Ga Moodies Group, Barberton Greenstone Belt, South Africa. Precambrian Research, 151, 185–210.
    [Google Scholar]
  34. Hessler, A.M. & Fildani, A. (2005) Detrital zircon geochronology as applied to the evolution of the petroleum‐rich Talara basin, northwest Peru. Geol. Soc. Am. Abstr. Programs, 37, 4–51.
    [Google Scholar]
  35. Iddings, A. & Olsson, A. (1928) Geology of northwest Peru. Am. Ass. Petrol. Geol. Bull., 12, 1–39.
    [Google Scholar]
  36. INGEMMET (Instituto Geologico Minero Y Metalurgico Del Peru)
    INGEMMET (Instituto Geologico Minero Y Metalurgico Del Peru) . (1999) Bolletin Numero 55, Serie A: Carta Geologica Nacional (1:100000). Responsable Oscar Palacios Moncayo, Lima. http://www.ingemmet.gob.pe/Images/productos/imagenes_asociadas/Publicaciones.pdf
  37. Ingersoll, R.V., Bullard, T.F., Ford, R.L., Grimm, J.P., Pickle, J.D. & Sares, S.W. (1984) The effect of grain size on detrital modes: a test of the Gazzi-Dickinson point-counting method. J. Sediment. Petrol., 54, 103–116.
    [Google Scholar]
  38. Ingle, J.C.Jr. (1980) Cenozoic peleobathymetry and depositional history of selected sequences within the southern California continental borderlands. Cushman Foundation Foraminiferal Res. Spec. Publ., 19, 165–195.
    [Google Scholar]
  39. Ingle, J.C.Jr., Keller, G. & Kolpack, R.L. (1980) Benthic foraminiferal biofacies, sediments and water masses of the southern Peru‐Chile Trench area, southeastern Pacific Ocean. Micropaleontology, 26 (2), 113–150.
    [Google Scholar]
  40. Jaillard, E., Herail, J., Monfret, T., Diaz‐Martinez, E., Baby, P., Lavenu, A. & Dumont, J.F. (2000) Tectonic evolution of the Andes of Ecuador, Peru, Bolivia, and northernmost Chile. In: Tectonic Evolution of South America (Ed. by U.G.Cordani , E.J.Milani , A.T.Filho & D.A.Campos ), pp. 481–561. 31st International Geological Congress, Rio de Janeiro.
    [Google Scholar]
  41. Jaillard, E., Laubacher, G., Bengtson, P., Dhondt, A.V. & Bulot, L.G. (1999) Stratigraphy and evolution of the Cretaceous forearc Celica‐Lancones basin of the southwestern Equador. J. South Am. Earth Sci., 12, 61–68.
    [Google Scholar]
  42. Jaillard, E., Ordonez, M., Benitez, S., Berrones, G., Jimenez, N., Montenegro, G. & Zambrano, I. (1995) Basin development in an accretionary, oceanic‐floored forearc setting: southern coastal Ecuador during late Cretaceous to Late Eocene times. In: Petroleum Basins of South America (Ed. by A.J.Tankard , R.Suarez Soruco & H.J.Welsink ), Am. Ass. Petrol. Geol. Mem., 62, 597–613.
    [Google Scholar]
  43. Jaillard, E. & Soler, P. (1996) Cretaceous to early Paleogene tectonic evolution of the northern Central Andes (0–18°S) and its relations to geodynamics. Tectonophysics, 259, 41–53.
    [Google Scholar]
  44. Jaillard, E., Soler, P., Carlier, G. & Mourier, T. (1990) Geodynamic evolution of the northern and central Andes during early to middle Mesozoic times: a Tethyan model. J. Geol. Soc. London, 147, 1009–1022.
    [Google Scholar]
  45. Kraemer, P., Weiner, G. & Alvarez, P. (1999) Evolucion Tectonoestratigrafica de la Cuenca de Tumbes‐Progreso, offshore Peru. INGEPET, EXPR‐1‐PK‐07. (Extended abstract, non peered review, in Spanish).
  46. Lamb, S. & Davis, P. (2003) Cenozoic climate change as a possible cause for the rise of the Andes. Nature, 425, 792–797.
    [Google Scholar]
  47. Laursen, J. & Normark, W.R. (2003) Impact of structural and autocyclic basin‐floor topography on the depositional evolution of the deep‐water Valparaiso forearc basin, central Chile. Basin Res., 15, 201–226.
    [Google Scholar]
  48. Lonsdale, P. (1978) Ecuadorian subduction system. Am. Ass. Petrol. Geol. Bull., 62, 2454–2477.
    [Google Scholar]
  49. Lowe, D.R. (1982) Sediment gravity‐flows II; depositional models with special reference to the deposit of high‐density turbidity currents. J. Sediment.Petrol., 52, 279–297.
    [Google Scholar]
  50. Marsaglia, K.M. & Carozzi, A.V. (1991) Depositional environment, sand provenance, and diagenesis of the basal salina formation (lower Eocene), NW Peru. J. South Am. Earth Sci., 3, 253–267.
    [Google Scholar]
  51. Mayes, C.L., Lawver, L.A. & Sandwell, D.T. (1990) Tectonic history and new Isochron chart of South Pacific. J. Geophys. Res., 95, 8543–8567.
    [Google Scholar]
  52. McLennan, S.M. (1989) Rare earth elements in sedimentary rocks, influence on provenance and sedimentary processes. In: Geochemistry and Mineralogy of Rare Earth Elements (Ed. by B.R.Lipin & G.A.McKay ), Rev. Mineralogy , 21, 169–200.
    [Google Scholar]
  53. Mourier, T., Laj, C., Megard, F., Roperch, P., Mitouard, P. & Farfan Medrano, A. (1988) An accreted continental terrane in northwestern Peru. Earth Planet. Sci. Lett., 88, 182–192.
    [Google Scholar]
  54. Nesbitt, H.W. (1979) Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature, 279, 206–210.
    [Google Scholar]
  55. Nesbitt, H.W. & Young, G. (1989) Formation and diagenesis of weathering profiles. J. Geol., 97, 129–147.
    [Google Scholar]
  56. Noble, S.R., Aspden, J.A. & Jemielita, R. (1997) Northern Andean crustal evolution: new U-Pb geochronological constraints from Ecuador. Geol. Soc. Am. Bull., 109, 789–798.
    [Google Scholar]
  57. Noblet, C., Lavenu, A. & Marocco, R. (1996) Concept of continuum as opposed to periodic tectonism in the Andes. Tectonophysics, 255, 65–78.
    [Google Scholar]
  58. Nurnberg, D. & Muller, R.D. (1991) The tectonic evolution of the South Atlantic from late Jurassic to present. Tectonophysics, 191, 27–53.
    [Google Scholar]
  59. Okada, H. & Bukry, D. (1980) Supplementary modification and introduction of code numbers to the lower latitude coccolith biostratigraphic zonation (Bukry, 1973, 1975). Mar. Micropaleontol., 5 (3), 321–325.
    [Google Scholar]
  60. Palomino, J.R. & Carozzi, A.V. (1979) Sedimentology and electric log interpretation of the Cabo Blanco Sandstone (Lower Eocene), Talara basin, northwest Peru. Archives des Sciences, Societe de Physique et d'Histoire Naturelle de Geneve, 32, 127–149.
    [Google Scholar]
  61. Pardo‐Casas, F. & Molnar, P. (1987) Relative motion of the Nazca (Farallon) and South American plates since late Cretaceous time. Tectonophysics, 6, 233–248.
    [Google Scholar]
  62. Pedoja, K., Ortlieb, L., Dumont, J.F., Lamothe, M., Ghaleb, B., Auclair, M. & Laborusse, B. (2006) Quaternary coastal uplift along the Talara Arc (Ecuador, Northern peru) from new marine terrace data. Mar. Geol., 228, 73–91.
    [Google Scholar]
  63. Picarelli, A.T., Pozo, E.G., Daudt, J., Leyva, J., Arriola, P. & Arispe, A. (2003) Upper‐Eocene Fault‐Controlled Deep Water Systems in the Talara Forearc Basin, Northwest Peru: Sand‐Transport Paths, Sand‐Body Geometry and Exploration and Development Opportunities. AAPG Abstract, AAPG Annual Meeting, May 11–14, 2003.
  64. Reynaud, C., Jaillard, E., Lapierre, H., Mamberti, M. & Mascle, G.H. (1999) Oceanic plateau and island arcs of southwestern Ecuador: their place in the geodynamic evolution of northwestern South America. Tectonophysics, 307, 235–254.
    [Google Scholar]
  65. Rollinson, H. (1993) Using Geochemical Data: Evaluation, Presentation, Interpretation. Prentice Hall, Pearson Education Limited, Longman Group, London, UK, 352pp.
    [Google Scholar]
  66. Ryan, H.F. & Coleman, P.J. (1992) Composite transform‐convergent plate boundaries: description and discussion. Mar. Petrol. Geol., 9, 89–97.
    [Google Scholar]
  67. Sage, F., Collot, J.‐Y. & Ranero, C.R. (2006) Interplate patchiness and subduction‐erosion mechanisms: evidence from depth-migrated seismic images at the Central Ecuador convergent margin. Geology, 34, 997–1000.
    [Google Scholar]
  68. Sanchez, J., Palacios, O., Feininger, T., Carlotto, V. & Quispesivana, L. (2006) Puesta en evidencia de granitoides triasico an loa Amotape‐Tahuin: Deflexion de Huancabamba. XIII Congreso Peruano de Geologia, Resumenes Extendidos, Sociedad Geologica del Peru, pp. 312–315. (Extended Abstract, non reviewed, in Spanish)
  69. Seranne, M. (1987) Evolution Tectono‐Sedimentaire du Bassin de Talara (nord‐ouest du Perou). Bull. Inst. Franc. Anden, XVI (3–4), 103–125. (In French).
    [Google Scholar]
  70. Shepherd, G.L. & Moberly, R. (1981) Coastal structure of the continental margin, NW Peru and SW Ecuador. Geol. Soc. Am. Mem., 154, 351–391.
    [Google Scholar]
  71. Silver, P.G., Russo, R.M. & Lithgow‐Bertolloni, C. (1998) Coupling of South American and African plate motion and plate deformation. Science, 279, 60–63.
    [Google Scholar]
  72. Somoza, R. (1998) Updated Nazca (Farallon)‐ South America relative motions during the last 40 m.y.: implications for the mountain building in the central Andean region. J. South Am. Earth Sci., 11, 211–215.
    [Google Scholar]
  73. Sosson, M., Bourgois, J. & Mercier de Lepinay, B. (1994) SeaBeam and deep‐sea submersible Nautile surveys in the Chiclayo canyon off Peru: subsidence and subduction erosion of an Andean type convergent margin since Pliocene time. Mar. Geol., 118, 237–256.
    [Google Scholar]
  74. Spikings, R.A., Winkler, W., Hughes, R.A. & Handler, R. (2005) Thermochronology of allochthonous terranes in Ecuador: Unravelling the accretionary and post-accretionary history of the Northern Andes. Tectonophysics, 399, 195–220.
    [Google Scholar]
  75. Spinelli, G.A. & Field, M.E. (2003) Evolution of continental slope gullies of the Northern California margin. J. Sediment. Res., 71 (2), 237–245.
    [Google Scholar]
  76. Taylor, S.R. & McLennan, S.M. (1985) The Continental Crust: Its Composition and Evolution. Blackwell, Oxford.
    [Google Scholar]
  77. Travis, R.B. (1953) La Brea‐Pariñas oil field, northwest Peru. Am. Ass. Petrol. Geol. Bull., 37, 2093–2118.
    [Google Scholar]
  78. Valencia, K. & Uyen, D. (2002) Cuenca Lancones: Interpretation geologica. INGEPET, EXPR‐3‐KV‐18. (Extended Abstract, non peer reviewed, in Spanish).
  79. Van Wagoner, J.C., Mitchum, R.M., Campion, K.M. & Rahmanian, V.D. (1990) Siliciclastic sequence stratigraphy in well logs, cores, and outcrops. Am. Assoc. Petrol. Geol. Methods Explor. Ser., 7, 1–55.
    [Google Scholar]
  80. Von Heune, R. & Scholl, D.W. (1991) Observations at convergent margin concerning sediment subduction erosion, and the growth of continental crust. Rev. Geophys., 29, 279–316.
    [Google Scholar]
  81. Weiss, L. (1955) Foraminifera from the Paleocene Pale Greda formation of Peru. J. Paleontol., 29, 1–21.
    [Google Scholar]
  82. Wells, R.E., Blakely, R.J., Sugiyama, Y., Scholl, D.W. & Dinterman, P.A. (2003) Basin‐centered asperities in great subduction zone earthquakes‐a link between slip, subsidence, and subduction erosion. J. Geophys. Res., 108 (B10), 2507, doi: DOI: 10.1029/2002JB002072. 1–21.
    [Google Scholar]
  83. Witt, C., Bourgois, J., Michaud, F., Ordonez, M., Jimenez, N. & Sosson, M. (2006) Development of the Gulf of Guayaquil (Ecuador) during the Quaternary as an effect of the North Andean block tectonic escape. Tectonics, 25, TC3017.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2007.00346.x
Loading
/content/journals/10.1111/j.1365-2117.2007.00346.x
Loading

Data & Media loading...

Supplements

Major and trace element data for shales in the Talara Basin. XRF analyses performed by Washington State GeoAnalytical Laboratories. Unnormalized rare‐earth element data for shales in the Talara Basin. ICP‐MS analyses performed by Washington State GeoAnalytical Laboratories.This material is available as part of the online article from: (This link will take you to the article abstract).Please note: Blackwell Publishing are not responsible for the content or functionality of any supplementary materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.

Supporting info item

Supporting info item

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error