1887
Volume 19, Issue 4
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

Four Mesozoic–Cenozoic palaeothermal episodes related to deeper burial and subsequent exhumation and one reflecting climate change during the Eocene have been identified in a study of new apatite fission‐track analysis (AFTA®) and vitrinite reflectance data in eight Danish wells. The study combined thermal‐history reconstruction with exhumation studies based on palaeoburial data (sonic velocities) and stratigraphic and seismic data. Mid‐Jurassic exhumation (. 175 Ma) was caused by regional doming of the North Sea area, broadly contemporaneous with deep exhumation in Scandinavia. A palaeogeothermal gradient of 45 °C km−1 at that time may be related to a mantle plume rising before rifting in the North Sea. Mid‐Cretaceous exhumation affecting the Sorgenfrei–Tornquist Zone is probably related to late Albian tectonic movements (. 100 Ma). The Sole Pit axis in the southern North Sea experienced similar inversion and this suggests a plate‐scale response along crustal weakness zones across NW Europe. Mid‐Cenozoic exhumation affected the eastern North Sea Basin and the onset of this event correlates with a latest Oligocene unconformity (. 24 Ma), which indicates a major Scandinavian uplift phase. The deeper burial that caused the late Oligocene thermal event recognized in the AFTA data reflect progradation of lower Oligocene wedges derived from the uplifting Scandinavian landmass. The onset of Scandinavian uplift is represented by an earliest Oligocene unconformity (. 33 Ma). Late Neogene exhumation affected the eastern (and western) North Sea Basin including Scandinavia. The sedimentation pattern in the central North Sea Basin shows that this phase began in the early Pliocene (. 4 Ma), in good agreement with the AFTA data. These three phases of Cenozoic uplift of Scandinavia also affected the NE Atlantic margin, whereas an intra‐Miocene unconformity (. 15 Ma) on the NE Atlantic margin reflects tectonic movements of only minor amplitude in that area. The study demonstrates that only by considering episodic exhumation as an inherent aspect of the sedimentary record can the tectonic evolution be accurately reconstructed.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2007.00329.x
2007-09-20
2024-03-29
Loading full text...

Full text loading...

References

  1. Al‐Chalabi, M. & Rosenkranz, P.L. (2002) Velocity‐depth and time‐depth relationships for a decompacted uplifted unit. Geophys. Prospect., 50, 661–664.
    [Google Scholar]
  2. Andrews‐Speed, C.P., Oxburgh, E.R. & Cooper, B.A. (1984) Temperatures and depth‐dependent heat flow in western North Sea. AAPG Bull., 11, 1764–1784.
    [Google Scholar]
  3. Andsbjerg, J., Nielsen, L.H., Johannessen, P. & Dybkjær, K. (2001) Divergent development of depositional environments in the Danish Central Graben and the Norwegian–Danish Basin following the Jurassic North Sea Doming event. In: Sedimentary Environments Offshore Norway – Palaeozoic to Recent (Ed. by O.J.Martinsen & T.Dreyer ), Norsk Petrol. Foren. Spec. Publ., 10, 175–197.
    [Google Scholar]
  4. Argent, J.D., Stewart, S.A., Green, P.F. & Underhill, J.R. (2002) Heterogeneous exhumation in the Inner Moray Firth, UK North Sea: constraints from new AFTA and seismic data. J. Geol. Soc. London, 159, 715–729.
    [Google Scholar]
  5. Balling, N., Nielsen, S.B., Christiansen, H.S., Christensen, L.D. & Poulsen, S. (1992) The Subsurface Thermal Reigme and Temperature of Geothermal Reservoirs in Denmark. Department of Earth Sciences. Geophysical Laboratory, University of Aarhus, Aarhus.
    [Google Scholar]
  6. Barbarand, J., Carter, A., Wood, I. & Hurford, A.J. (2003) Compositional and structural control of fission track annealing in apatite. Chem. Geol., 198, 107–137.
    [Google Scholar]
  7. Bergelin, I. (2006) 40Ar/39Ar geochronology of basalts in Scania, S Sweden: evidence for two pulses at 191–178 Ma and 110 Ma, and their relation to the breakup of Pangea. MSc Thesis, Geological Institute, University of Lund.
  8. Bertelsen, F. (1978) The Upper Triassic–Lower Jurassic Vinding and Gassum Formations of the Norwegian–Danish Basin. Danm. Geol. Unders. Ser. B, 3.
  9. Bertelsen, F. (1980) Lithostratigraphy and depositional history of the Danish Triassic. Geol. Surv. Denm. Ser. B, 4.
    [Google Scholar]
  10. Bonow, J.M., Japsen, P., Lidmar‐Bergström, K., Chalmers, J.A. & Pedersen, A.K. (2006) Cenozoic uplift of Nuussuaq and Disko, West Greenland‐elevated erosion surfaces as uplift markers of a passive margin. Geomorphology, 80, 325–337.
    [Google Scholar]
  11. Bott, M.H.P. (1981) Crustal doming and the mechanism of continental rifting. Tectonophysics, 73, 1–8.
    [Google Scholar]
  12. Bray, R.J., Green, P.F. & Duddy, I.R. (1992) Thermal history reconstruction using apatite fission track analysis and vitrinite reflectance: a case study from the UK East Midlands and the Southern North Sea. In: Exploration Britain: Into the Next Decade (Ed. by R.F.P.Hardman ), Geol. Soc. London Spec. Publ., 67, 3–25.
    [Google Scholar]
  13. Britze, P. & Japsen, P. (1991) Geological map of Denmark 1: 400,000. The Danish Basin. ‘Top Zechstein’ and the Triassic; two‐way traveltime and depth, thickness and interval velocity. Geol. Surv. Denm. Map Ser., 31.
    [Google Scholar]
  14. Bulat, J. & Stoker, S.J. (1987) Uplift determination from interval velocity studies, UK, southern North Sea. In: Petroleum Geology of North West Europe (Ed. by J.Brooks & K.W.Glennie ), pp. 293–305. Graham & Trotman.
    [Google Scholar]
  15. Buchardt, B. (1978) Oxygen isotope paleotemperatures from the Tertiary period in the North Sea area. Nature, 275, 121–123.
    [Google Scholar]
  16. Burnham, A.K. & Sweeney, J.J. (1989) A chemical kinetic model of vitrinite reflectance maturation. Geochim. Cosmochim. Acta, 53, 2649–2657.
    [Google Scholar]
  17. Carlson, W.D., Donelick, R.A. & Ketcham, R.A. (1999) Variability of apatite fission‐track annealing kinetics: I. Experimental results. Am. Mineral., 84, 1213–1223.
    [Google Scholar]
  18. Cederbom, C., Larson, S.Å., Tullborg, E.‐L. & Stiberg, J.‐P. (1999) Fission track thermochronology applied to Phanerozoic thermotectonic events in central and southern Sweden. Tectonophysics, 316, 153–167.
    [Google Scholar]
  19. Chapman, R.E. (1983) Petroleum Geology. Elsevier, Amsterdam.
    [Google Scholar]
  20. Clausen, O.R., Gregersen, U., Michelsen, O. & Sørensen, J.C. (1999) Factors controlling the Cenozoic sequence development in the eastern parts of the North Sea. J. Geol. Soc. London, 156, 809–816.
    [Google Scholar]
  21. Clausen, O.R., Nielsen, O.B., Huuse, M. & Michelsen, O. (2000) Geological indications for Palaeogene uplift in the eastern North Sea Basin. Global Planet. Change, 24, 175–187.
    [Google Scholar]
  22. Cloetingh, S., Cornu, T., Ziegler, P.A. & Beekman, F. (2006) Neotectonics and intraplate continental topography of the northern Alpine Foreland. Earth-Sci. Rev., 74, 127–196.
    [Google Scholar]
  23. Corcoran, D.V. & Doré, A.G. (2005) A review of techniques for the estimation of magnitude and timing of exhumation in offshore basins. Earth-Sci. Rev., 72, 129–168.
    [Google Scholar]
  24. Crowhurst, P.V., Green, P.F. & Kamp, P.J.J. (2002) Appraisal of (U–Th)/He apatite thermochronology as a thermal history tool for hydrocarbon exploration: an example from the Taranaki Basin, New Zealand. AAPG Bull., 86, 1801–1819.
    [Google Scholar]
  25. Dadlez, R., Narkeiwicz, M., Stephenson, R.A., Visser, M.T.M. & Van Wees, J.‐D. (1995) Tectonic evolution of the Mid‐Polish Trough: modelling implications and significance for central European geology. Tectonophysics, 252, 179–195.
    [Google Scholar]
  26. Deighton, I., Draper, I.J., Hill, A.J. & Boreham, C.J. (2003) A hydrocarbon generation model for the Cooper and Eromanga Basins. APPEA J., 2003, 433–451.
    [Google Scholar]
  27. Doré, A.G., Cartwright, J., Stoker, M.S., Turner, J.P. & White, N. (eds) (2002a) Exhumation of the North Atlantic margin: Timing, Mechanisms and Implications for Petroleum Exploration: Geol. Soc. London, Spec. Publ., 196.
  28. Doré, A.G., Corcoran, D.V. & Scotchman, I.C. (2002b) Prediction of the hydrocarbon system in exhumed basins, and application to the NW European margin. In: Exhumation of the North Atlantic Margin: Timing, Mechanisms and Implications for Petroleum Explorations (Ed. by A.G.Doré , J.A.Cartwright , M.S.Stoker , J.Turner & N.White ), Geol. Soc. London Spec. Publ., 196, 401–429.
    [Google Scholar]
  29. Duddy, I.R., Green, P.F., Bray, R.J. & Hegarty, K.A. (1994) Recognition of the thermal effects of fluid flow in sedimentary basins. In: Geofluids: Origin, Migration and Evolution of Fluids in Sedimentary Basins (Ed. by J.Parnell ), Geol. Soc. London Spec. Publ. , 78, 325–345.
    [Google Scholar]
  30. Duddy, I.R., Green, P.F., Hegarty, K.A., Bray, R.J. & O'Brien, G.W. (1998) Dating and duration of hot fluid flow events determined using AFTA and vitrinite reflectance‐based thermal history reconstruction. In: Dating and Duration of Hot Fluid Flow Events and Fluid‐Rook Interaction (Ed. by J.Parnell ), Geol. Soc. London Spec. Publ., 144, 41–51.
    [Google Scholar]
  31. Dybkjær, K. (2004) Dinocyst stratigraphy and palynofacies studies used for refining a sequence stratigraphic model – uppermost Oligocene to lower Miocene, Jylland. Denmark. Rev. Palaeobot. Palynol., 131, 201–249.
    [Google Scholar]
  32. Erlström, M. (1994) Evolution of Cretaceous sedimentation in Scania. Lund Publ. Geol., 122.
    [Google Scholar]
  33. Erlström, M. & Sivhed, U. (2001) Intracratonic dextral transtension and inversion of the southern Kattegat on the southwest margin of Baltica – Seismostratigraphy and structural development. SGU Res. Pap. C, 832.
    [Google Scholar]
  34. Erlström, M., Thomas, S.A., Deeks, N. & Sivhed, U. (1997) Structure and tectonic evolution of the Tornquist Zone and adjacent sedimentary basins in Scania and the southern Baltic Sea area. Tectonophysics, 271, 191–215.
    [Google Scholar]
  35. EUGENO‐S working group.
    EUGENO‐S working group. (1988) Crustal structures and tectonic evolution of the transition between the Baltic Shield and the North German Caledonides (the EUGENO‐S Project). Tectonophysics, 150, 253–348.
    [Google Scholar]
  36. Faleide, J.I., Kyrkejbø, R., Kjennerud, T., Gabrielsen, R.H., Jordt, H., Fanavoll, S. & Bjerke, M. (2002) Tectonic impact on sedimentary processes during Cenozoic evolution of the northern North Sea and surrounding areas. In: Exhumation of the North Atlantic Margin: Timing, Mechanisms and Implications for Petroleum Exploration (Ed. by A.G.Doré , J.A.Cartwright , M.S.Stoker , J.Turner & N.White ), Geol. Soc. London Spec. Publ., 196, 235–269.
    [Google Scholar]
  37. Friis, H., Mikkelsen, J. & Sandersen, P. (1998) Depositional environment of the Vejle Fjord Formation of the Upper Oligocene–Lower Miocene of Denmark: a back island/barrier‐protected depositional complex. Sediment. Geol., 17, 221–244.
    [Google Scholar]
  38. Galbraith, R.F. & Laslett, G.M. (1993) Satistical models for mixed fission track ages. Nuclear Tracks, 21, 459–470.
    [Google Scholar]
  39. Gallagher, K. (1995) Evolving temperature histories from apatite fission‐track data. Earth Planet. Sci. Lett., 136, 421–435.
    [Google Scholar]
  40. Gradstein, F.M., Ogg, J.G., Smith, A.G., Bleeker, W. & Lourens, L.J. (2004) A new Geologic Time Scale, with special reference to Precambrian and Neogene. Episodes, 27, 83–100.
    [Google Scholar]
  41. Green, P.F., Duddy, I.R., Gleadow, A.J.W., Tingate, P.R. & Laslett, G.M. (1986) Thermal annealing of fission tracks in apatite 1. A qualitative description. Chem. Geol. (Isotope Geosci. Sect.), 59, 237–253.
    [Google Scholar]
  42. Green, P.F., Duddy, I.R. & Bray, J.R. (1995) Applications of thermal history reconstruction in inverted basins. In: Basin Inversion. (Ed. by J.G.Buchanan & P.G.Buchanan ), Geol. Soc., London Spec. Publ., 88, 149–165.
    [Google Scholar]
  43. Green, P.F., Duddy, I.R. & Hegarty, K.A. (2002) Quantifying exhumation from apatite fission‐track analysis and vitrinite reflectance data: precision, accuracy and latest results from the Atlantic margin of NW Europe. In: Exhumation of the North Atlantic Margin: Timing, Mechanisms and Implications for Petroleum Exploration (Ed. by A.G.Doré , J.Cartwright , M.S.Stoker , J.P.Turner & N.White ), Geol. Soc. London Spec. Publ., 196, 331–354.
    [Google Scholar]
  44. Green, P.F., Crowhurst, P.V. & Duddy, I.R. (2004) Integration of AFTA and (U‐Th)/He thermochronology to enhance the resolution and precision of thermal history reconstruction in the Anglesea‐1 well, Otway Basin, SE Australia. In: Eastern Australian Basins Symposium II (Ed. by P.J.Boult , D.R.Johns & S.C.Lang ), pp. 117–131. Petroleum Exploration Society of Australia.
    [Google Scholar]
  45. Green, P.F., Duddy, I.R. & Hegarty, K.A. (2005a) Comment on “Compositional and structural control of fission track annealing in apatite” by J. Barbarand, A. Carter, I. Wood and A. J. Hurford, Chemical Geology, 198 (2003), 107–137, Chemical Geology, 214, 351–358.
  46. Green, P.F., Duddy, I.R. & Bray, J.R. (2005b) Resolution of Early Cenozoic Regional Exhumation and Mid‐Cretaceous Basin inversion in the Southern North Sea, using AFTA. AAPG Meeting, Paris, 2005, Abstract.
  47. Gregersen, S., Voss, P., Sbomali, Z.H., Grad, M. & Roberts, R.Tor working group. (2006) Physical differences in the deep lithosphere of northern and central Europe. In: European Lithosphere Dynamics (Ed. by D.G.Gee & R.A.Stephenson ), Geol. Soc. London Memoirs. , 32, 313–322.
    [Google Scholar]
  48. Hansen, S. (1996) Quantification of net uplift and erosion on the Norwegian Shelf south of 66°N from sonic transit times of shale. Norsk Geol. Tidsskrift, 76, 245–252.
    [Google Scholar]
  49. Haq, B.U., Hardenbol, J. & Vail, P.R. (1988) Mesozoic and Cenozoic chronostratigraphy and cycles of sea‐level change. In: Sea‐Level Changes – An Integrated Approach (Ed. by C.K.Wilgus , et al.) Soc.Econ. Paleontol. Minerol. Spec. Publ., 42, 71–108.
    [Google Scholar]
  50. Heasler, H.P. & Kharitonova, N.A. (1996) Analysis of sonic well logs applied to erosion estimates in the Bighorn Basin, Wyoming. AAPG Bull., 80, 630–646.
    [Google Scholar]
  51. Heilmann‐Clausen, C., Nielsen, O.B. & Gersner, F. (1985) Lithostratigraphy and depositional environments in the upper Palaeocene and Eocene of Denmark. Bull. Geol. Soc. Denmark, 33, 287–323.
    [Google Scholar]
  52. Hillis, R.R. (1995) Quantification of Tertiary exhumation in the United Kingdom southern North Sea using sonic velocity data. AAPG Bull., 79, 130–152.
    [Google Scholar]
  53. Holford, S.P., Turner, J.P. & Green, P.F. (2005) Reconstructing the Mesozoic‐Cenozoic exhumation history of the Irish Sea basin system using apatite fission‐track analysis and vitrinite reflectance data. In: North West Europe and Global Perspectives: Proceedings of the 6th Petroleum Geology Conference (Ed. by A.G.Doré & B.Vining ), pp. 1095–1108. Geological Society, London.
    [Google Scholar]
  54. Hurford, A.J.H. & Green, P.F. (1983) The zeta age calibration of fission‐track dating. Chemical Geology (Isotope Geoscience Section), 1, 285–317.
    [Google Scholar]
  55. Huuse, M., Lykke‐Andersen, H. & Michelsen, O. (2002) Reply to comment of P. Japsen et al. on ‘Cenozoic evolution of the eastern Danish North Sea’. Mar. Geol., 186, 577–581.
    [Google Scholar]
  56. Japsen, P. (1992) Landhævningerne I Sen Kridt og Tertiær i det nordlige Danmark. Dansk Geol. Foren. Årsskrift for 1990–91, 169–182.
    [Google Scholar]
  57. Japsen, P. (1993) Influence of lithology and Neogene uplift on seismic velocities in Denmark; implications for depth conversion of maps. AAPG Bull., 77, 194–211.
    [Google Scholar]
  58. Japsen, P. (1997) Regional Neogene exhumation of Britain and the western North Sea. J. Geol. Soc. London, 154, 239–247.
    [Google Scholar]
  59. Japsen, P. (1998) Regional velocity‐depth anomalies, North Sea Chalk: a record of overpressure and Neogene uplift and erosion. AAPG Bull., 82, 2031–2074.
    [Google Scholar]
  60. Japsen, P. (1999) Overpressured Cenozoic shale mapped from velocity anomalies relative to a baseline for marine shale, North Sea. Petrol. Geosci., 5, 321–336.
    [Google Scholar]
  61. Japsen, P. (2000) Investigation of multi‐phase erosion using reconstructed shale trends based on sonic data. Sole Pit axis, North Sea. Global Planet. Change, 24, 189–210.
    [Google Scholar]
  62. Japsen, P. & Bidstrup, T. (1999) Quantification of late Cenozoic erosion in Denmark based on sonic data and basin modelling. Bull Geol. Soc. Denmark, 46, 79–99.
    [Google Scholar]
  63. Japsen, P. & Chalmers, J.A. (2000) Neogene uplift and tectonics around the North Atlantic: overview. Global Planet. Change, 24, 165–173.
    [Google Scholar]
  64. Japsen, P. & Langtofte, C. (1991) Geological map of Denmark 1:400,000. The Danish Basin. ‘Top Triassic’ and the Jurassic–Lower Cretaceous, two‐way traveltime and depth, thickness and interval velocity. Geol. Surv. Denm. Map Ser., 30.
    [Google Scholar]
  65. Japsen, P., Bidstrup, T. & Lidmar‐Bergström, K. (2002a) Neogene uplift and erosion of southern Scandinavia induced by the rise of the South Swedish Dome. In: Exhumation of the North Atlantic Margin: Timing, Mechanisms and Implications for Petroleum Exploration (Ed. by A.G.Doré , J.Cartwright , M.S.Stoker , J.P.Turner & N.White ), Geol. Soc. London Spec. Publ., 196, 183–207.
    [Google Scholar]
  66. Japsen, P., Bidstrup, T. & Rasmussen, E.S. (2002b) Comment on: ‘Cenozoic evolution of the eastern Danish North Sea’ by M. Huuse, H. Lykke‐Andersen, O. Michelsen, [Marine Geology 177, 243–269]. Mar. Geol., 186, 571–575.
    [Google Scholar]
  67. Japsen, P., Green, P.F. & Chalmers, J.A. (2005) Separation of Palaeogene and Neogene uplift on Nuussuaq, West Greenland. J. Geol. Soc. London, 162, 299–314.
    [Google Scholar]
  68. Japsen, P., Bonow, J.M., Green, P.F., Chalmers, J.A. & Lidmar‐Bergström, K. (2006) Elevated, passive continental margins: Long‐term highs or Neogene uplifts. New evidence from West Greenland. Earth Planet. Sci. Lett., 248, 315–324.
    [Google Scholar]
  69. Japsen, P., Mukerji, T. & Mavko, G. (2007) Constraints on velocity‐depth trends from rock physics models. Geophys. Prospect., 55, 135–154.
    [Google Scholar]
  70. Jensen, L.N & Michelsen, O. (1992) Tertiær hævning og erosion i skagerrak, Nordjylland og Kattegat. Dansk Geol. Foren. Årsskrift for 1990–91, 159–168.
    [Google Scholar]
  71. Jensen, L.N. & Schmidt, B.J. (1992) Late Tertiary uplift and erosion in the Skagerrak area; magnitude and consequences. Norsk Geol. Tidsskr., 72, 275–279.
    [Google Scholar]
  72. Jensen, R.P. & Doré, A.G. (1993) A recent Norwegian Shelf heating event – fact or fantasy? In: Basin Modelling: Advances and Applications (Ed. by A.G.Doré , et al.) NPF Spec. Publ. , 3, 85–106.
    [Google Scholar]
  73. Jordt, H., Faleide, J.I., Bjørlykke, K. & Ibrahim, M.T. (1995) Cenozoic sequence stratigraphy of the central and northern North Sea Basin: tectonic development, sediment distribution and provenance areas. Mar. Petrol. Geol., 12, 845–879.
    [Google Scholar]
  74. King, S.D. & Anderson, D.L. (1998) Edge‐driven convection. Earth Planet. Sci. Lett., 160, 289–296.
    [Google Scholar]
  75. Koch, B.E. (1989) Geology of the Søby–Fasterholt area. Danm. Geol. Unders. Ser. A, 22.
    [Google Scholar]
  76. Koch, J.‐O. (1983) Sedimentology of Middle and Upper Jurassic sandstone reservoirs of Denmark. Geol. Mijnb., 62, 115–129.
    [Google Scholar]
  77. Larsen, G. & Dinesen, A. (1959) Vejle Fjord Formationen ved Brejning. Danm. Geol. Unders. II. række, 82.
    [Google Scholar]
  78. Laslett, G.M., Green, P.F., Duddy, I.R. & Gleadow, A.J.W. (1987) Thermal annealing of fission tracks in apatite 2. A quantitative analysis. Chem. Geol. (Isotope Geosci. Sect.), 65, 1–13.
    [Google Scholar]
  79. Liboriussen, J., Ashton, P. & Tygesen, T. (1987) The tectonic evolution of the Fennoscandian Border Zone in Denmark. Tectonophysics, 137, 21–29.
    [Google Scholar]
  80. Lidmar‐Bergström, K. (1995) Relief and saprolites through time on the Baltic Shield. Geomorphology, 12, 45–61.
    [Google Scholar]
  81. Lidmar‐Bergström, K. (1996) Long‐term morphotectonic evolution in Sweden. Geomorphology, 16, 33–59.
    [Google Scholar]
  82. Lidmar‐Bergström, K. (1999) Uplift histories revealed by landforms of the Scandinavian domes. In: Uplift, Erosion and Stability: Perspectives on Long‐Term Landscape Development (Ed. by B.J.Smith , W.B.Whalley & P.A.Warke ), Geol. Soc. London Spec. Publ., 162, 85–91.
    [Google Scholar]
  83. Lidmar‐Bergström, K., Ollier, C.D. & Sulebak, J.C. (2000) Landforms and uplift history of southern Norway. Global Planet. Change, 24, 211–231.
    [Google Scholar]
  84. Lundin, E.R. & Doré, A.G. (1997) A tectonic model for the Norwegian passive margin with implications for the NE Atlantic; Early Cretaceous to break‐up. J. Geol. Soc. London, 154, 545–550.
    [Google Scholar]
  85. Magara, K. (1976) Thickness of removed sedimentary rocks, paleopore pressure, and paleotemperature, southwestern part of Western Canada Basin. AAPG Bull., 60, 554–565.
    [Google Scholar]
  86. Marie, J.P.P. (1975) Rotliegendes stratigraphy and diagenesis. In: Petroleum and the Continental Shelf of North‐West Europe (Ed. by A.W.Woodland ), pp. 205–211. Applied Science, London.
    [Google Scholar]
  87. Michelsen, O. (1978) Stratigraphy and distribution of Jurassic deposits of the Norwegian–Danish Basin. Danm. Geol. Unders. Ser. B, 2.
    [Google Scholar]
  88. Michelsen, O. & Nielsen, L.H. (1991) Well records on the Phanerozoic stratigraphy in the Fennoscandian Border Zone, Denmark. Danm. Geol. Unders. Ser. A, 29.
    [Google Scholar]
  89. Michelsen, O. & Nielsen, L.H. (1993) Structural development of the Fennoscandian Border Zone, offshore Denmark. Mar. Petrol. Geol., 10, 124–134.
    [Google Scholar]
  90. Michelsen, O., Thomsen, E., Danielsen, M., Heilmann‐Clausen, C., Jordt, H. & Laursen, G.V. (1998) Cenozoic sequence stratigraphy in the eastern North Sea. In: Mesozoic–Cenozoic Sequence Stratigraphy of Western European Basins (Ed. by P.C.De Graciansky , et al.) Soc. Econom. Paleontol. Mineral. Spec. Publ., 60, 91–118.
    [Google Scholar]
  91. Miller, K.G., Mountain, G.S., Browning, J.V., Kominz, M., Sugarman, P.J., Christie‐Blick, N., Katz, M.E. & Wright, J.D. (1998) Cenozoic global sea level, sequences, and the New Jersey transect: Results from coastal plain and continental slope drilling. Rev. Geophys., 36, 569–601.
    [Google Scholar]
  92. Mogensen, T.E. & Korstgård, J.A. (2003) Triassic and Jurassic transtension along part of the Sorgenfrei–Tornquist Zone in the Danish Kattegat. In: The Jurassic of Denmark and Greenland (Ed. by J.Ineson & F.Surlyk ), Geol. Surv. Denm. Greenl. Bull., 1, 439–458.
    [Google Scholar]
  93. Møller, J.J. & Rasmussen, E.S. (2003) Middle Jurassic–Early Cretaceous rifting of the Danish Central Graben. In: The Jurassic of Denmark and Greenland (Ed. by J.Ineson & F.Surlyk ), Geol. Surv. Denm. Greenl. Bull., 1, 247–264.
    [Google Scholar]
  94. Nielsen, L.H. (1993) Øvre Trias–Mellem Jura aflejringerne i det Danske Bassin. Dansk Geologisk Forenings 100 års jubilæumssymposium. Geologi på tværs af det Danske Rige. Copenhagen, 19–20 November 1993. Abstracts, 35–38.
  95. Nielsen, L.H. (2003) Late Triassic–Jurassic development of the Danish Basin and Fennoscandian Border Zone, southern Scandinavia. In: The Jurassic of Denmark and Greenland (Ed. by J.Ineson & F.Surlyk ), Geol. Surv. Denm. Greenl. Bull., 1, 459–526.
    [Google Scholar]
  96. Nielsen, L.H. & Japsen, P. (1991) Deep wells in Denmark 1935–1990. Lithostratigraphic subdivision. Geol. Surv. Denm. Ser. A, 31.
    [Google Scholar]
  97. Nielsen, S.B., Paulsen, G.E., Hansen, D.L., Gemmer, L., Clausen, O.R., Jacobsen, B.H., Balling, N., Huuse, M. & Gallahger, K. (2002) Paleocene initiation of Cenozoic uplift in Norway. In: Exhumation of the North Atlantic Margin: Timing, Mechanisms and Implications for Petroleum Exploration (Ed. by A.G.Doré , J.Cartwright , M.S.Stoker , J.P.Turner & N.White ), Geol. Soc. London, Spec. Publ., 196, 45–65.
    [Google Scholar]
  98. Nielsen, S.B., Thomsen, E., Hansen, D.L. & Clausen, O.R. (2005) Plate‐wide stress relaxation explains European Palaeocene basin inversions. Nature, 435, 195–198.
    [Google Scholar]
  99. Norling, E. & Bergström, J. (1987) Mesozoic and Cenozoic tectonic evolution of Scania, southern Sweden. Tectonophysics, 137, 7–19.
    [Google Scholar]
  100. Nur, A., Mavko, G., Dvorkin, J. & Galmundi, D. (1998) Critical porosity; a key to relating physical properties to porosity in rocks. Leading Edge, 17, 357–362.
    [Google Scholar]
  101. O'Sullivan, P.B. & Brown, R.W. (1998) Effects of surface cooling on apatite fission‐track data: evidence for Miocene climatic change, North Slope, Alaska. In: Advances in Fission‐Track Geochronology (Ed. by P.Van Der Haute & F.De Corte ), pp. 255–267. Kluwer Academic Publishers, Dordrecht.
    [Google Scholar]
  102. Orton, G.J. & Reading, H.G. (1993) Variability of deltaic processes in terms of sediment supply, with particular emphasis on grain size. Sedimentology, 40, 475–512.
    [Google Scholar]
  103. Overeem, I., Weltje, G.J., Bishop‐Kay, C. & Kroonenberg, S.B. (2001) The Late Cenozoic Eridanos delts system in the Southern North Sea Basin: a climatic signal in sediment supply? Basin Res., 13, 293–312.
    [Google Scholar]
  104. Oxburgh, E.R. & Andrews‐Speed, C.P. (1981) Temperature, thermal gradients and heat flow in the Southwestern North Sea. In: The Petroleum Geology of the Continental Shelf of NW Europe (Ed. by L.V.Illing & G.D.Hobson ), pp. 141–151. Institute of Petroleum, London.
    [Google Scholar]
  105. Plint, A.G. & Wadsworth (2003) Sedimentology and palaeomorphology of four large valley systems incosing delta plains, western Canada Foreland Basin: implication for mid‐Cretaceous sea‐level changes. Sedimentology, 50, 1147–1186.
    [Google Scholar]
  106. Praeg, D., Stoker, M.S., Shannon, P.M., Ceramicola, S., Hjelstuen, B.O., Laberg, J.S. & Mathiesen, A. (2005) Episodic Cenozoic tectonism and the development of the NW European ‘passive’ continental margin. Mar. Petrol. Geol., 22, 977–1005.
    [Google Scholar]
  107. Rasmussen, E.S. (1994) Sequence stratigraphic aspects of the Tertiary succession from offshore Gabon, southern Denmark, and the southcentral Pyrenees. PhD Thesis, Aarhus University, Aarhus.
  108. Rasmussen, E.S. (2004a) The interplay between true eustatic sea‐level changes, tectonics, and climatical changes: What is the dominating factor in sequence formation of the Upper Oligocene‐Miocene succession in the eastern North Sea Basin, Denmark? Global Planet. Change, 41, 15–30.
    [Google Scholar]
  109. Rasmussen, E.S. (2004b) Stratigraphy and depositional evolution of the uppermost Oligocene–Miocene succession in Denmark. Bull. Geol. Soc. Denmark, 51, 89–109.
    [Google Scholar]
  110. Rasmussen, E.S. (2005) The geology of the upper Middle–Upper Miocene Gram Formation in the Danish area. Palaeontos, 7, 5–18.
    [Google Scholar]
  111. Rasmussen, E.S. & Dybkjær, K. (2005) Sequence stratigraphy of the Upper Oligocene–lower Miocene of eastern Jylland, Denmark: role of structural relief and variable sediment supply in controlling sequence development. Sedimentology, 52, 25–63.
    [Google Scholar]
  112. Rasmussen, E.S., Vejbæk, O.V., Bidstrup, T., Piasecki, S. & Dybkjær, K. (2005) Late Cenozoic depositional history of the Danish North Sea Basin: implications for the petroleum systems in the Kraka, Halfdan, Siri and Nini fields. In: Petroleum Geology: North‐West Europe and Global Perspectives–Proceedings of the 6th Petroleum Geology Conference (Ed. by A.G.Doré & B.A.Vinding ), 1347–1358. Geological Society, London.
    [Google Scholar]
  113. Rasmussen, L.B. (1961) De miocæne formationer i Danmark. Danm. Geol. Unders. IV. række, 4.
    [Google Scholar]
  114. Rohrman, M., Van Der Beek, P., Andriessen, P. & Cloetingh, S.A.P.L. (1995) Meso‐Cenozoic morphotectonic evolution of southern Norway: Neogene domal uplift inferred from apatite fission track thermochronology. Tectonics, 14, 700–714.
    [Google Scholar]
  115. Scherbaum, F. (1982) Seismic velocities in sedimentary rocks; indicators of subsidence and uplift. Geol. Rundsch., 71, 519–536.
    [Google Scholar]
  116. Schøler, P., Andsbjerg, J., Clausen, O.R., Dam, G., Dybkjær, K., Hamberg, L., Heilmann‐Clausen, C., Johannesen, E.P., Prince, I. & Rasmussen, J.A. (2007) Lithostratigraphy of the Palaeogene to Lower Neogene (Rogaland to Westray groups) sediments of the Danish sector of the North Sea. Geol. Surv. Denm. Greenl. Bull. (in press).
    [Google Scholar]
  117. Sigmond, E.M.O. (1993) Bedrock Map of Norway and Adjacent Ocean Areas. Geological Survey of Norway, Oslo.
    [Google Scholar]
  118. Sorgenfrei, T. & Buch, A. (1964) Deep tests in Denmark, 1935–1959. Danm. Geol. Unders. III række, 36.
    [Google Scholar]
  119. Spjeldnæs, N. (1975) Palaeogeography and facies distribution in the Tertiary of Denmark and surrounding areas. Norges Geol. Unders. Bull., 316, 289–311.
    [Google Scholar]
  120. Stoker, M.S., Praeg, D., Shannon, P.M., Hjelstuen, B.O., Laberg, J.S., Nielsen, T., Van Weering, T.C.E., Sejrup, H.P. & Evans, D. (2005) Neogene evolution of the Atlantic continental margin of NW Europe (Lofoten Islands to SW Ireland): anything but passive. In: Petroleum Geology: NW Europe and Global Perspectives: Proceedings of the 6th Conference (Ed. by A.G.Doré & B.Vining ), pp. 1057–1076. Geological Society, London.
    [Google Scholar]
  121. Surlyk, F. (1980) Demark. In: The Geology of the European Countries, Denmark, Finland, Norway, Sweden (pp. 1–50. Graham and Trotman Ltd., Dunod.
    [Google Scholar]
  122. Surlyk, F. (1997) A cool‐water carbonate ramp with bryozoan mounds: Late Cretaceous‐Danian of the Danish Basin. In: Cool‐Water Carbonates (Ed. by J.P.James & J.D.A.Clarke ), pp. 293–307.
    [Google Scholar]
  123. Underhill, J.R. & Partington, M.A. (1993) Use of genetic sequence stratigraphy in defining and determining a regional tectonic control on the ‘mid‐Cimmerian Unconformity’– implications for North Sea basin development and teh global sea‐level chart. In: Silisiclastic Sequence Stratigraphy: Recent Developments and Applications (Ed. by P.Weimer & H.W.Posamentier ), AAPG Memoir , 58, 449–484.
    [Google Scholar]
  124. Van Dalfsen, W., Mijnlieff, H.F. & Simmelink, H.J. (2005) Interval velocities of a triassic claystone: key to burial history and velocity building. EAGE 67th Conference & Exhibition – Madrid, Spain, 13–16 June 2005, 1–4.
  125. Van Horn, B. (1987) Structural evolution, timing and tectonic style of the Sole Pit inversion. Tectonophysics, 137, pp. 239–284.
    [Google Scholar]
  126. Vejbæk, O.V. (1997) Dybe strukturer i danske sedimentære bassiner. Geol. Tidsskrift, 4, 1–31.
    [Google Scholar]
  127. Vejbæk, O.V. & Britze, P. (1994) Geological map of Denmark. 1:750 000. Top pre‐Zechstein (two‐way traveltime and depth). Geol. Surv. Denm. Map Ser., 45, 5 maps and 8 pp.
    [Google Scholar]
  128. Zachos, J.C., Pagani, M., Sloan, L.C., Thomas, E. & Billups, K. (2001) Trends, rythms, and aberrations in global climate 65 Ma to present. Science, 292, 686–693.
    [Google Scholar]
  129. Ziegler, P.A. (1990) Geological Atlas of Western and Central Europe, 2nd edn. Elsevier for Shell Internationale Petroleum Maatschappij, Amsterdam.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2007.00329.x
Loading
/content/journals/10.1111/j.1365-2117.2007.00329.x
Loading

Data & Media loading...

Supplements

Thermal history interpretation of AFTA data in onshore Denmark wells B?RGLUM‐1, S?BY‐1, ?RS‐1, FARS?‐1 and GASSUM‐1 Thermal history reconstruction in offshore Denmark well HANS‐1 and onshore Denmark wells T?NDER‐2 and ‐3, based on AFTA and VR Thermal history reconstruction in offshore Denmark wells FELICIA‐1 & ‐1A based on AFTA and VR data

Supporting info item

Supporting info item

Supporting info item

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error