1887
Volume 19, Issue 4
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

Geologic and chronometric studies of alluvial fan sequences in south‐central Australia provide insights into the roles of tectonics and climate in continental landscape evolution. The most voluminous alluvial fans in the Flinders Ranges region have developed adjacent to catchments uplifted by Plio‐Quaternary reverse faults, implying that young tectonic activity has exerted a first‐order control on long‐term sediment accumulation rates along the range front. However, optically stimulated luminescence (OSL) dating of alluvial fan sequences indicates that late Quaternary facies changes and intervals of sediment aggradation and dissection are not directly correlated with individual faulting events. Fan sequences record a transition from debris flow deposition and soil formation to clast‐supported conglomeritic sedimentation by ∼30 ka. This transition is interpreted to reflect a landscape response to increasing climatic aridity, coupled with large flood events that episodically stripped previously weathered regolith from the landscape. Late Pleistocene to Holocene cycles of fan incision and aggradation post‐date the youngest‐dated surface ruptures and are interpreted to reflect changes in the frequency and magnitude of large floods. These datasets indicate that tectonic activity controlled long‐term sediment supply but climate governed the spatial and temporal patterns of range‐front sedimentation. Mild intraplate tectonism appears to have influenced Plio‐Quaternary sedimentation patterns across much of the southern Australian continent, including the geometry and extent of alluvial fans and sea‐level incursions.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2007.00336.x
2007-09-03
2024-04-20
Loading full text...

Full text loading...

References

  1. Adamiec, G. & Aitken, M.J. (1998) Dose‐rate conversion factors: update. Ancient TL, 16, 37–50.
    [Google Scholar]
  2. Aitken, M.J. (1998) An Introduction to Optical Dating: the Dating of Quaternary Sediments by the Use of Photon‐Stimulated Luminescence. Oxford University Press, Oxford. 267pp.
    [Google Scholar]
  3. Allen, P.A. & Densmore, A.L. (2000) Sediment flux from an uplifting fault block. Basin Res., 12, 367–380.
    [Google Scholar]
  4. Allen, P.A. & Hovius, N. (1998) Sediment supply from landslide‐dominated catchments; implications for basin‐margin fans. Basin Res., 10, 19–35.
    [Google Scholar]
  5. Alley, N.F. & Benbow, M.C. (1995) Tertiary. In: The Geology of South Australia, Volume 2: The Phanerozoic (Ed. by J.F.Drexel & W.V.Preiss ), South Aust. Geol. Surv. Bull., 54, 219–281.
    [Google Scholar]
  6. Bard, E. (1999) Ice ages temperatures and geochemistry. Science, 284, 1133–1132.
    [Google Scholar]
  7. Belperio, A.P. (1995) Quaternary. In: The Geology of South Australia Volume 2, The Phanerozoic (Ed. by J.F.Drexel & W.V.Preiss. ), South Aust. Geol. Surv. Bull. , 54, 219–281.
    [Google Scholar]
  8. Blair, T.C. (1999) Cause of dominance by sheetflood vs. debris‐flow processes on two adjoining alluvial fans, Death Valley, California. Sedimentology, 46, 1015–1028.
    [Google Scholar]
  9. Bourman, R.P. & Lindsay, J.M. (1989) Timing, extent and character of late Cainzoic faulting on the eastern margin of the Mt Lofty Ranges, South Australia. Trans. Roy. Soc. South Aust., 113, 63–67.
    [Google Scholar]
  10. Bourman, R.P., Martinaitis, P., Prescott, J.R. & Belperio, A.P. (1997) The age of the Pooraka Formation and its implications, with some preliminary results from luminescence dating. Trans. Roy. Soc. South Aust., 121, 83–94.
    [Google Scholar]
  11. Bowler, J.M. (1976) Aridity in Australia: age, origins and expression in aeolian landforms and sediments. Earth‐Sci. Rev., 12, 279–310.
    [Google Scholar]
  12. Bowler, J.M., Johnston, H., Olley, J.M., Prescott, J.R., Roberts, R.G., Shawcross, W. & Spooner, N.A. (2003) New ages for human occupation and climatic change at Lake Mungo, Australia. Nature, 421, 837–840.
    [Google Scholar]
  13. Bull, W.B. (1964) Geomorphology of segmented alluvial fans in western Fresno County, California. US Geol. Surv. Professional Paper, 352E, 89–129.
    [Google Scholar]
  14. Bull, W.B. (1977) The alluvial fan environment. Progr. Phys. Geogr., 1, 222–270.
    [Google Scholar]
  15. Bull, W.B. (1991) Geomorphic Responses to Climatic Change. Oxford University Press, New York. 325pp.
    [Google Scholar]
  16. Callen, R.A. & Tedford, R.H. (1976) New late Cainozoic rock units and depositional environments, Lake Frome Area, South Australia. Trans. Roy. Soc. South Aust., 100, 125–167.
    [Google Scholar]
  17. Calvache, M., Viseras, C. & Fernandez, J. (1997) Controls on fan development; evidence from fan morphometry and sedimentology; Sierra Nevada, SE Spain. Geomorphology, 21, 69–84.
    [Google Scholar]
  18. Cèlérier, J., Sandiford, M., Lundbek, D. & Quigley, M. (2005) Modes of active intraplate deformation, Flinders Ranges, Australia. Tectonics, 24, doi: DOI: 10.029/2004&C001679.
    [Google Scholar]
  19. Clark, D.J. & Leonard, M. (2003) Principal stress orientations from multiple focal plane solutions: new insight in to the Australian intraplate stress field. In: Evolution and Dynamics of the Australian Plate (Ed. by R.R.Hillis & D.Muller ), Geol. Soc. Aust. Spec. Publ. , 22, 85–99.
    [Google Scholar]
  20. Coats, R.P. (1973) Copley map sheet, South Australia. Geological Survey of South Australia, Geological Series Explanatory Notes, Sheet SH/54–9.
  21. Coblentz, D., Sandiford, M., Richardson, R., Zhou, S. & Hillis, R. (1995) The origins of the Australian stress field. Earth Planet. Sci. Lett., 133, 299–309.
    [Google Scholar]
  22. Coblentz, D., Zhou, S., Hillis, R., Richardson, R. & Sandiford, M. (1998) Topography, plate‐boundary forces and the Indo‐Australian intraplate stress field. J. Geophys. Res., 103, 919–931.
    [Google Scholar]
  23. Dadson, S.J., Hovius, N., Chen, H., Dade, W., Lin, J., Hsu, M., Lin, C., Horng, M., Chen, T., Milliman, J. & Stark, C. (2004) Earthquake‐triggered increase in sediment delivery from an active mountain belt. Geology, 32, 733–736.
    [Google Scholar]
  24. Dalgarno, C.R. & Johnson, J.E. (1966) PARACHILNA map sheet. Geological Atlas of South Australia, 1:250 000 series. Geological Survey of South Australia, Adelaide.
  25. Dalgarno, C.R., Johnson, J.E., Forbes, B.G. & Thomson, B.P. (1968) Port Augusta map sheet. Geological Atlas of South Australia, 1:250 000 series, Geological Survey of South Australia, Adelaide.
  26. Denny, C.C. (1965) Alluvial fans in Death Valley Region, California and Nevada. US Geol. Surv. Professional Paper, 466, 59pp.
    [Google Scholar]
  27. Densmore, A.L., Allen, P.A. & Simpson, G. (2007) Development and response of a coupled catchment fan system under changing tectonic and climatic forcing. J. Geophys. Res. – Earth Surf., 112, 1–16.
    [Google Scholar]
  28. Duller, G.A.T. (1999) Analyst Version 2.12. Luminescence Laboratory, University of Wales, Aberystwyth.
    [Google Scholar]
  29. Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H. & Olley, J.M. (1999) Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: part I, experimental design and statistical models. Archaeometry, 41, 339–364.
    [Google Scholar]
  30. Gibson, H.J. & Stüwe, K. (2000) Multiphase cooling and exhumation of the southern Adelaide fold belt: constraints from apatite fission track data. Basin Res., 12, 31–45.
    [Google Scholar]
  31. Greenhalgh, S.A., Love, D., Malpas, K. & McDougall, R. (1994) South Australian earthquakes, 1980–92. Aust. J. Earth Sci., 41, 483–495.
    [Google Scholar]
  32. Harris, W.K. (1970) Palynology of Lower Tertiary sediments, southeastern Australia. MSc Thesis, University of Adelaide, unpublished.
  33. Harvey, A.M. (2004) The response of dry‐region alluvial fans to Quaternary climatic change. In: Desertification in the Third Millenium (Ed. by A.Alsharhan , W.Wood , A.Goudie , A.Fowler & E.Abdellatif ), pp. 83–98. Balkema, Rotterdam.
    [Google Scholar]
  34. Harvey, A.M., Mather, A.E. & Stokes, M. (2005) Alluvial fans; geomorphology, sedimentology, dynamics – introduction, a review of alluvial‐fan research. Geol. Soc. Spec. Publ., 251, 1–7.
    [Google Scholar]
  35. Harvey, A.M. & Wells, S.G. (1994) Late Pleistocene and Holocene changes in hillslope sediment supply to alluvial fan systems; Zzyzx, California. In: Environmental Change in Drylands: Biogeographical and Geomorphological Perspectives (Ed. by A.C.Millington & K.Pye ), pp. 67–84. John Wiley and Sons, New York.
    [Google Scholar]
  36. Harvey, A.M., Wigand, P.E. & Wells, S.G. (1999) Response of alluvial fan systems to the late Pleistocene to Holocene climatic transition; contrasts between the margins of pluvial lakes Lahontan and Mojave, Nevada and California, USA. Catena, 36, 255–281.
    [Google Scholar]
  37. Hesse, P.P., Magee, J.W. & Van Der Kaars, S. (2004) Late Quaternary climates of the Australian arid zone; a review. Quatern. Int., 118–119, 87–102.
    [Google Scholar]
  38. Hooke, R.L. & Rohrer, W.L. (1977) Relative erodibility of source‐area rock types, as determined from second‐order variations in alluvial‐fan size. Geol. Soc. Am. Bull., 88, 1177–1182.
    [Google Scholar]
  39. Humphrey, N.F. & Heller, P.L. (1995) Natural oscillations in coupled geomorphic systems; an alternative origin for cyclic sedimentation. Geology, 23, 499–502.
    [Google Scholar]
  40. Johns, R.K (1968) Investigation of Lake Torrens, report of investigations – South Australia. Geol. Surv., 31, 1–62.
    [Google Scholar]
  41. Johnson, B.J., Miller, G.H., Fogel, M.L., Magee, J.W., Gagan, M.K. & Chivas, A.R. (1999) 65,000 years of vegetation change in central Australia and the Australian summer monsoon. Science, 284, 1150–1152.
    [Google Scholar]
  42. Keefer, D.K. (1994) The importance of earthquake‐induced landslides to long‐term slope erosion and slope‐failure hazards in seismically active regions. Geomorphology, 10, 265–284.
    [Google Scholar]
  43. Lemon, N.M. & McGowran, B. (1989) Structural development of the Willunga embayment, St. Vincent Basin, South Australia, National Centre for Petroleum Geology and Geophysics, Adelaide, Field Guide, Unpublished.
  44. May, R.I. & Bourman, R.P. (1984) Coastal landslumping in Pleistocene sediments at Sellicks Beach, South Australia. Trans. Roy. Soc. South Aust., 108, 85–94.
    [Google Scholar]
  45. McLaren, S., Dunlap, W.J., Sandiford, M. & McDougall, I. (2002) Thermochronology of high heat‐producing crust at Mount Painter, South Australia: implications for tectonic reactivation of continental interiors. Tectonics, 21, doi: DOI: 10.1029/2000TC001275.
    [Google Scholar]
  46. Mejdahl, V. (1979) Thermoluminescence dating: beta-dose attenuation in quartz grains. Archaeometry, 21, 61–72.
    [Google Scholar]
  47. Miranda, J. (2007) Late Neogene stratigraphy and sedimentation across the Murray Basin, southeastern Australia. Unpublished PhD Thesis, The University of Melbourne.
  48. Molnar, P. (2001) Climate change, flooding in arid environments, and erosion rates. Geology, 29, 1071–1074.
    [Google Scholar]
  49. Molnar, P., Anderson, R.S., Kier, G. & Rose, J. (2006) Relationships among probability distributions of stream discharges in floods, climate, bed load transport, and river incision. J. Geophys. Res., 111, doi: DOI: 10.1029/2005JF000310.
    [Google Scholar]
  50. Murray, A.S. & Olley, J.M. (2002) Precision and accuracy in the optically stimulated luminescence dating of sedimentary quartz: a status review. Geochronometria, 21, 1–15.
    [Google Scholar]
  51. Murray, A.S. & Roberts, R.G. (1998) Measurement of the equivalent dose in quartz using a regenerative‐dose single‐aliquot protocol. Radiat. Meas., 29, 503–515.
    [Google Scholar]
  52. Murray, A.S. & Wintle, A.G. (2000) Luminescence dating of quartz using an improved single‐aliquot regenerative‐dose protocol. Radiat. Meas., 32, 57–73.
    [Google Scholar]
  53. Olley, J.M., Caitcheon, G. & Roberts, R.G. (1999) The origin of dose distributions in fluvial environments, and the prospect of dating single grains from fluvial deposits using optically stimulated luminescence. Radiat. Meas., 30, 207–217.
    [Google Scholar]
  54. Olley, J.M., Pietsch, T. & Roberts, R.G. (2004) Optical dating of Holocene sediments from a variety of geomorphic settings using single grains of quartz. Geomorphology, 60, 337–358.
    [Google Scholar]
  55. Pederson, J., Pazzaglia, F., Smith, G. & Mou, Y. (2000) Neogene through Quaternary hillslope records, basin sedimentation, and landscape evolution of southeastern Nevada. In: Great Basin and Sierra Nevada (Ed. by D.Lageson , S.Peters. & M.Lahren ), pp. 117–143. Geological Society of America Field Guide 2, Boulder, CO.
    [Google Scholar]
  56. Preiss, W. & Sweet, I. (1966) The geology of the Depot Creek area, Flinders Ranges, South Australia. Unpublished BSc Hons. Thesis. The University of Adelaide.
  57. Preiss, W.V. & Faulkner, P. (1984) Geology, geophysics and stratigraphic drilling at depot Creek, Southern Flinders Ranges. Geol. Surv. South Austr. Quaterly Notes, 89, 10–19.
    [Google Scholar]
  58. Prescott, J.R. & Hutton, J.T. (1994) Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiat. Meas., 23, 497–500.
    [Google Scholar]
  59. Quigley, M., Cupper, M. & Sandiford, M. (2006) Quaternary faults of south‐central Australia: palaeoseismicity, slip rates and origin. Aust. J. Earth Sci., 53, 315–331.
    [Google Scholar]
  60. Quigley, M., Sandiford, M., Fifield, K. & Alimanovic, A. (2007a) Geomorphic expressions of active intraplate tectonism: constraints from 10Be abundances. Earth and Planetary Science Letters, 261, doi: DOI: 10.1016/j.epsl.2007.06.020.
    [Google Scholar]
  61. Quigley, M., Sandiford, M., Fifield, K. & Alimanovic, A. (2007b) Bedrock erosion and relief production in the northern Flinders Ranges, Australia. Earth Surf. Process. Landforms, 32, 929–944.
    [Google Scholar]
  62. Ritter, J.B., Miller, J.R., Enzel, Y. & Wells, S. (1995) Reconciling the roles of tectonism and climate in Quaternary alluvial fan evolution. Geology, 23, 245–248.
    [Google Scholar]
  63. Sandiford, M. (2003) Neotectonics of southeastern Australia: linking the Quaternary faulting record with seismicity and in situ stress. In: Evolution and Dynamics of the Australian Plate (Ed. by R.R.Hillis & D.Muller ), Geol. Soc. Aust. Spec. Publ. , 22, 101–113.
    [Google Scholar]
  64. Sandiford, M. (2007) The tilting continent: a new constraint on the dynamic topographic field from Australia. Earth Planet. Sci. Lett., doi: DOI: 10.1016/j.epsl.2007.06.023.
    [Google Scholar]
  65. Sandiford, M., Wallace, M. & Coblentz, D. (2004) Origin of the in situ stress field in southeastern Australia. Basin Res., 16, 325–338.
    [Google Scholar]
  66. Silva, P., Harvey, A., Zazo, C. & Goy, J. (1992) Geomorphology, depositional style and morphometric relationships of Quaternary alluvial fans in the Guadalentin depression (Murcia, southeast Spain). Z. Geomorphol., 36, 325–341.
    [Google Scholar]
  67. Sprigg, R.C. (1945) Some aspects of the geomorphology of a portion of the Mount Lofty Ranges. Trans. Roy. Soc. South Aust., 69, 277–304.
    [Google Scholar]
  68. Stevens, B.P.J. & Corbett, G.J. (1993) The redan geophysical zone; part of the Willyama Supergroup. Broken Hill, Australia. Aust. J. Earth Sci., 40, 319–338.
    [Google Scholar]
  69. Stokes, S. (1999) Luminescence dating applications in geomorphological research. Geomorphology, 29, 153–171.
    [Google Scholar]
  70. Thorne, A., Grün, R., Mortimer, G., Simpson, J.J., McCulloch, M., Taylor, L. & Curnoe, D. (1999) Australia's oldest human remains: age of the Lake Mungo skeleton. J. Hum. Evol., 36, 591–612.
    [Google Scholar]
  71. Twidale, C.R. & Campbell, E.M. (2005) Australian Landforms: Understanding a Low, Flat, Arid and Old Landscape. Rosenberg Publishing Pty Ltd, Kenthurst, NSW. 336pp.
    [Google Scholar]
  72. Veevers, J.J. & Conaghan, P.J. (1984) Phanerozoic Earth History of Australia. Clarendon Press, Oxford University Press, Oxford. 418pp.
    [Google Scholar]
  73. Viseras, C., Calvache, M., Soria, J. & Fernandez, J. (2003) Differential features of alluvial fans controlled by tectonic or eustatic accommodation space; examples from the Betic Cordillera, Spain. Geomorphology, 50, 181–202.
    [Google Scholar]
  74. Wasson, R.J. (1979) Sedimentation history of the Mundi‐Mundi alluvial fans, western New South Wales. Sediment. Geol., 22, 21–51.
    [Google Scholar]
  75. Whipple, K.X. & Traylor, C.R. (1996) Tectonic control on fan size: the importance of spatially-variable subsidence rates. Basin Res., 8, 351–366.
    [Google Scholar]
  76. Williams, G.E. (1973) Late Quaternary piedmont sedimentation, soil formation and palaeoclimates in arid South Australia. Z. Geomorphol., 17, 102–125.
    [Google Scholar]
  77. Williams, M., Prescott, J., Chappell, J., Adamson, D., Cock, B., Walker, K. & Gell, P. (2001) The enigma of a late Pleistocene wetland in the Flinders Ranges, South Australia. Quatern. Int., 83–85, 129–144.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2007.00336.x
Loading
/content/journals/10.1111/j.1365-2117.2007.00336.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error