1887
Volume 19, Issue 3
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

Apatite (U–Th)/He and fission track thermochronometry have been combined with 3D thermal modelling to constrain the late‐ to post‐orogenic exhumation history of the Central Pyrenees, Spain. Data from four massifs immediately north and south of the present drainage divide of the mountain belt reveal a diachroneity in the transition from syn‐ to post‐orogenic forcing of exhumation. Immediately south of the drainage divide, rapid exhumation of ∼1.5 mm year−1 decelerated after ∼30 Ma to ∼0.03 mm year−1. A similar transition occurred immediately north of the drainage divide at the same time. Further south, in the core of the Axial Zone antiformal stack of the Pyrenees, rapid (∼1 mm year−1), syn‐orogenic exhumation continued to ∼20 Ma, but slowed to ∼0.1–0.2 mm year−1 soon after that time. This order of magnitude decrease in exhumation rates across the orogen records the diachronous transition into a post‐orogenic state for the mountain belt. These data do not record rejuvenation of exhumation in Late Miocene or Pliocene times driven either by large‐scale base‐level change or an evolution to more erosive climatic conditions.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2007.00333.x
2007-08-28
2024-03-29
Loading full text...

Full text loading...

References

  1. Babault, J., Van den Driessche, J., Bonnet, S., Castelltort, S. & Crave, A. (2005) Origin of the highly elevated Pyrenean peneplain. Tectonics, 24 (2), TC2010, doi: DOI: 10.1029/2004TC001697.
    [Google Scholar]
  2. Baldwin, J.A., Whipple, K.X. & Tucker, G.E. (2003) Implications of the shear stress river incision model for the timescale of postorogenic decay of topography. J. Geophys. Res. – Solid Earth, 108 (B3).
    [Google Scholar]
  3. Balestrieri, M.L., Stuart, F.M., Persano, C., Abbate, E. & Bigazzi, G. (2005) Geomorphic development of the escarpment of the Eritrean margin, southern Red Sea from combined apatite fission‐track and (U–Th)/He thermochronometry. Earth Planet. Sci. Lett., 231 (1–2), 97–110.
    [Google Scholar]
  4. Bartrina, M.T., Cabrera, L., Jurado, M.J., Guimera, J. & Roca, E. (1992) Evolution of the central Catalan margin of the Valencia trough (Western Mediterranean). Tectonophysics, 203 (1–4), 219–247.
    [Google Scholar]
  5. Beaumont, C., Munoz, J.A., Hamilton, J. & Fullsack, P. (2000) Factors controlling the alpine evolution of the central Pyrenees inferred from a comparison of observations and geodynamical models. J. Geophys. Res. – Solid Earth, 105 (B4), 8121–8145.
    [Google Scholar]
  6. Bourrouilh, R., Richert, J.P. & Zolnai, G. (1995) The north Pyrenean aquitaine basin, France – evolution and hydrocarbons. AAPG Bull. Am. Assoc. Petroleum Geol., 79 (6), 831–853.
    [Google Scholar]
  7. Braun, J. (2002) Quantifying the effect of recent relief changes on age‐elevation relationships. Earth Planet. Sci. Lett., 200 (3–4), 331–343.
    [Google Scholar]
  8. Braun, J. (2003) Pecube: a new finite-element code to solve the 3D heat transport equation including the effects of a time-varying, finite amplitude surface topography. Comput. Geosci., 29 (6), 787–794.
    [Google Scholar]
  9. Brown, R.W. & Summerfield, M.A. (1997) Some uncertainties in the derivation of rates of denudation from thermochronologic data. Earth Surf. Process. Landforms, 22 (3), 239–248.
    [Google Scholar]
  10. Cederbom, C.E., Sinclair, H.D., Schlunegger, F. & Rahn, M.K. (2004) Climate‐induced rebound and exhumation of the European Alps. Geology, 32 (8), 709–712.
    [Google Scholar]
  11. Choukroune, P. (1989) The ecors Pyrenean deep seismic profile reflection data and the overall structure of an orogenic belt. Tectonics, 8 (1), 23–39.
    [Google Scholar]
  12. Coney, P.J., Munoz, J.A., McClay, K.R. & Evenchick, C.A. (1996) Syntectonic burial and post‐tectonic exhumation of the southern Pyrenees foreland fold‐thrust belt. J. Geol. Soc., 153, 9–16.
    [Google Scholar]
  13. Dañobeitia, J.J., Bartolome, R., Checa, A., Maldonado, A. & Slootweg, A.P. (1999) An interpretation of a prominent magnetic anomaly near the boundary between the Eurasian and African plates (Gulf of Cadiz, SW margin of Iberia). Mar. Geol., 155 (1–2), 45.
    [Google Scholar]
  14. De Bruijne, C.H. & Andriessen, P.A.M. (2002) Far field effects of alpine plate tectonism in the Iberian microplate recorded by fault‐related denudation in the Spanish central system. Tectonophysics, 349 (1–4), 161–184.
    [Google Scholar]
  15. Donelick, R.A. & Miller, D.S. (1991) Enhanced tint fission‐track densities in low spontaneous track density apatites using Cf‐252‐derived fission fragment tracks – a model and experimental‐observations. Nucl. Tracks Radiat. Measure., 18 (3), 301–307.
    [Google Scholar]
  16. Dunai, T.J., Bikker, A. & Meesters, A.G.C.A. (2003) Decomp: a user-friendly forward modelling program for (U–Th)/He low-temperature geochronology. Geophys. Res. Abstracts, p. 14076.
    [Google Scholar]
  17. Ehlers, T.A. & Farley, K.A. (2003) Apatite (U–Th)/He thermochronometry: methods and applications to problems in tectonic and surface processes. Earth Planet. Sci. Lett., 206 (1–2), 1–14.
    [Google Scholar]
  18. Evans, G. & Archie, A. (2002) The flux of siliclastic sediment from the Iberian Peninsula, with particular reference to the Ebro. In: Sediment Flux to Basins: Causes, Controls and Consequences Geological Society (Ed. by L.E.F.S.J.Jones ), pp. 199–208. Special Publications, London.
    [Google Scholar]
  19. Farley, K.A. (2000) Helium diffusion from apatite: general behavior as illustrated by Durango fluorapatite. J. Geophys. Res. – Solid Earth, 105 (B2), 2903–2914.
    [Google Scholar]
  20. Farley, K.A. (2002) (U–Th)/He dating: techniques, calibrations, and applications, noble gases in geochemistry and cosmochemistry. Rev. Mineral. Geochem., 47, 819–844.
    [Google Scholar]
  21. Fitzgerald, P.G., Munoz, J.A., Coney, P.J. & Baldwin, S.L. (1999) Asymmetric exhumation across the Pyrenean orogen: implications for the tectonic evolution of a collisional orogen. Earth Planet. Sci. Lett., 173 (3), 157–170.
    [Google Scholar]
  22. Foeken, J.P.T., Dunai, T.J., Bertotti, G. & Andriessen, P.A.M. (2003) Late Miocene to present exhumation in the Ligurian Alps (southwest Alps) with evidence for accelerated denudation during the Messinian salinity crisis. Geology, 31 (9), 797–800.
    [Google Scholar]
  23. Guimera, J. (1984) Palaeogene evolution of deformation in the northeastern Iberian Peninsula. Geol. Mag., 121 (5), 413–420.
    [Google Scholar]
  24. Johns, D.R., Herber, M.A. & Schwander, M.M. (1989) Depositional sequences in the Castellón area, offshore northeast Spain. In: Atlas of Seismic Stratigraphy. Studies in Geology (Ed. by A.W.Bally ), pp. 181–184. American Association of Petroleum Geology, Tulsa, Oklahama.
    [Google Scholar]
  25. Ketcham, R.A., Donelick, R.A. & Donelick, M.B. (2000) AFTSolve: a program for multi-kinetic modeling of apatite fission-track data. Geol. Mater. Res., 2, 1.
    [Google Scholar]
  26. Krijgsman, W., Hilgen, F.J., Raffi, I., Sierro, F.J. & Wilson, D.S. (1999) Chronology, causes and progression of the Messinian salinity crisis. Nature, 400 (6745), 652–655.
    [Google Scholar]
  27. Lynn, G. (2005) Macrogeomorphology and Erosional History of the Post‐Orogenic Pyrenean Mountain Belt. The University of Edinburgh, Edinburgh, 388pp.
    [Google Scholar]
  28. Martinez Del Olmo, W. (1996) Depositional sequences in the gulf of València tertiary basin. In: Tertiary Basins of Spain: the Stratigraphic Record of Crustal Kinematics: World and Regional Geology (Ed. by P.F.F.C.J.Dabrio ), pp. 55–67. Cambridge University Press, New York.
    [Google Scholar]
  29. Meesters, A. & Dunai, T.J. (2002) Solving the production‐diffusion equation for finite diffusion domains of various shapes part 1. Implications for low‐temperature (U–Th)/He thermochronology. Chem. Geol., 186 (3–4), 333–344.
    [Google Scholar]
  30. Meigs, A.J. & Burbank, D.W. (1997) Growth of the South Pyrenean orogenic wedge. Tectonics, 16 (2), 239–258.
    [Google Scholar]
  31. Meigs, A.J., Verges, J. & Burbank, D.W. (1996) Ten‐million‐year history of a thrust sheet. Geol. Soc. Am. Bull., 108 (12), 1608–1625.
    [Google Scholar]
  32. Muñoz, J.A. (1992) Evolution of a continental collision belt: ECORS‐Pyrenees crustal balanced cross‐section. In: Thrust Tectonics (Ed. by K.McClay ), pp. 235–246. Chapman & Hall, London.
    [Google Scholar]
  33. Naylor, M. & Sinclair, H.D. (2007) Reconciling punctuated thrust deformation in the context of doubly vergent thrust wedges: Implications for the localization of uplift and exhumation. Geology, 35 (6), 559–562.
    [Google Scholar]
  34. Pazzaglia, F.J. & Brandon, M.T. (1996) Macrogeomorphic evolution of the post‐triassic Appalachian mountains determined by deconvolution of the offshore basin sedimentary record. Basin Res., 8 (3), 255–278.
    [Google Scholar]
  35. Pérez‐Rivaréres, F.J., Garcés, M., Arenas, C. & Pardo, G. (2002) Magnetocronología de la sucesión Miocena de la Sierra de Alcubierre (sector central de la cuenca del Ebro). Rev. Soc. Geol. Esp., 15 (3–4), 211–225.
    [Google Scholar]
  36. Persano, C., Stuart, F.M., Bishop, P. & Barfod, D.N. (2002) Apatite (U–Th)/He age constraints on the development of the great escarpment on the southeastern Australian passive margin. Earth Planet. Sci. Lett., 200 (1–2), 79–90.
    [Google Scholar]
  37. Pinet, P. & Souriau, M. (1988) Continental erosion and large‐scale relief. Tectonics, 7 (3), 563–582.
    [Google Scholar]
  38. Puigdefàbregas, C., Muñoz, J.A. & Vergés, J. (1992) Thrusting and foreland basin evolution in the southern Pyrenees. In: Thrust Tectonics (Ed. by K.McClay ), pp. 247–254. Chapman & Hall, London.
    [Google Scholar]
  39. Reiners, P.W., et al (2003) Post‐orogenic evolution of the Dabie Shan, eastern China, from (U–Th)/He and fission‐track thermochronology. Am. J. Sci., 303 (6), 489–518.
    [Google Scholar]
  40. Riba, O., Reguant, S. & Villena, J. (1983) Ensayo de sintesis estratigrafica y evolutiva de la cuenca terciaria del Ebro. In: Geologique Espana. Libro Jubilar (Ed. by J.M. Rios ), pp. 131–159. Geologique Espana, Barcelona.
    [Google Scholar]
  41. Roca, E. (2001) The northwest Mediterranean basin (Valencia trough, gulf of lions and liguro‐provençal basins): structure and geodynamic evolution. In: Peri‐Tethyan Rift/Wrench Basins and Passive Margins. Peri‐Tethys Memoir (Ed. by W.C.P.A.Ziegler , A.H.F.Robertson & S.Crasquin‐Soleau ), pp. 671–706. Publications Scientific du Muséum, Paris.
    [Google Scholar]
  42. Roca, E. & Desegaulx, P. (1992) Analysis of the geological evolution and vertical movements in the Valencia trough area, Western Mediterranean. Marine Petroleum Geol., 9 (2), 167.
    [Google Scholar]
  43. Roest, W.R. & Srivastava, S.P. (1991) Kinematics of the plate boundaries between Eurasia, Iberia, and Africa in the North‐Atlantic from the late cretaceous to the present. Geology, 19 (6), 613–616.
    [Google Scholar]
  44. Seguret, M. & Vergely, P. (1969) So‐called diving head style of Pyrenean structures between Llobregat and Ter (Southern slope of Eastern Pyrenees). CR Hebdomadaires Seances De L Acad. Sci. Serie D, 268 (13), 1702.
    [Google Scholar]
  45. Serrat, D. (1992) La Xarxa Fluvial Dels Països Catalans, Historia Natural dels Països Catalanas, Geologia II (pp. 375–389. Enciclopedia Catalana, Barcelona.
    [Google Scholar]
  46. Sinclair, H.D., Gibson, M., Naylor, M. & Morris, R.G. (2005) Asymmetric growth of the Pyrenees revealed through measurement and modeling of orogenic fluxes. Am. J. Sci., 305 (5), 369–406.
    [Google Scholar]
  47. Souriau, A. & Granet, M. (1995) A tomographic study of the lithosphere beneath the Pyrenees from local and Teleseismic data. J. Geophys. Res. – Solid Earth, 100 (B9), 18117–18134.
    [Google Scholar]
  48. Spotila, J.A., Bank, G.C., Reiners, P.W. & Naeser, C.W.(2004) Origin of the Blue Ridge escarpment along the passive margin of Eastern North America. Basin Res., 16 (1), 41–63.
    [Google Scholar]
  49. Srivastava, S.P., et al (1990) Iberian plate kinematics – a jumping plate boundary between Eurasia and Africa. Nature, 344 (6268), 756–759.
    [Google Scholar]
  50. Turcotte, D.L. & Schubert, G. (1982) Geodynamics: Applications of Continuum Physics to Geological Problems. John Wiley & Sons, New York, 450pp.
    [Google Scholar]
  51. Verges, J. & Munoz, J.A. (1990) Thrust sequences in the southern central Pyrenees. Bull. Soc. Geol. France, 6 (2), 265–271.
    [Google Scholar]
  52. Wolf, R.A., Farley, K.A. & Silver, L.T. (1996) Helium diffusion and low‐temperature thermochronometry of apatite. Geochim. Cosmochim. Acta, 60 (21), 4231–4240.
    [Google Scholar]
  53. Zeitler, P.K., Herczeg, A.L., McDougall, I. & Honda, M. (1987) U–Th–He dating of apatite – a potential thermochronometer. Geochim. Cosmochim. Acta, 51 (10), 2865–2868.
    [Google Scholar]
  54. Zeyen, H. & Fernandez, M. (1994) Integrated lithospheric modeling combining thermal, gravity, and local isostasy analysis – application to the Ne Spanish geotransect. J. Geophys. Res.-Solid Earth, 99 (B9), 18089–18102.
    [Google Scholar]
  55. Zhang, P.Z., Molnar, P. & Downs, W.R. (2001) Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate change on erosion rates. Nature, 410 (6831), 891–897.
    [Google Scholar]
  56. Zoetemeijer, R., Desegaulx, P., Cloetingh, S., Roure, F. & Moretti, I. (1990) Lithospheric dynamics and tectonic–stratigraphic evolution of the Ebro Basin. J. Geophys. Res.-Solid Earth Planets, 95 (B3), 2701–2711.
    [Google Scholar]
  57. Zwart, H.J. (1979) The geology of the central Pyrenees. Leidse Geol. Mededlingen, 50, 1–74.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2007.00333.x
Loading
/content/journals/10.1111/j.1365-2117.2007.00333.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error