1887
Volume 19, Issue 3
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

Sedimentary strata in the Lhasa terrane of southern Tibet record a long but poorly constrained history of basin formation and inversion. To investigate these events, we sampled Palaeozoic and Mesozoic sedimentary rocks in the Lhasa terrane for detrital zircon uranium–lead (U–Pb) analysis. The >700 detrital zircon U–Pb ages reported in this paper provide the first significant detrital zircon data set from the Lhasa terrane and shed new light on the tectonic and depositional history of the region. Collectively, the dominant detrital zircon age populations within these rocks are 100–150, 500–600 and 1000–1400 Ma. Sedimentary strata near Nam Co in central Lhasa are mapped as Lower Cretaceous but detrital zircons with ages younger than 400 Ma are conspicuously absent. The detrital zircon age distribution and other sedimentological evidence suggest that these strata are likely Carboniferous in age, which requires the existence of a previously unrecognized fault or unconformity. Lower Jurassic strata exposed within the Bangong suture between the Lhasa and Qiangtang terranes contain populations of detrital zircons with ages between 200 and 500 Ma and 1700 and 2000 Ma. These populations differ from the detrital zircon ages of samples collected in the Lhasa terrane and suggest a unique source area. The Upper Cretaceous Takena Formation contains zircon populations with ages between 100 and 160 Ma, 500 and 600 Ma and 1000 and 1400 Ma. Detrital zircon ages from these strata suggest that several distinct fluvial systems occupied the southern portion of the Lhasa terrane during the Late Cretaceous and that deposition in the basin ceased before 70 Ma. Carboniferous strata exposed within the Lhasa terrane likely served as source rocks for sediments deposited during Cretaceous time. Similarities between the lithologies and detrital zircon age‐probability plots of Carboniferous rocks in the Lhasa and Qiangtang terranes and Tethyan strata in the Himalaya suggest that these areas were located proximal to one another within Gondwanaland. U–Pb ages of detrital zircons from our samples and differences between the geographic distribution of igneous rocks within the Tibetan plateau suggest that it is possible to discriminate a southern vs. northern provenance signature using detrital zircon age populations.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2007.00330.x
2007-08-07
2024-04-19
Loading full text...

Full text loading...

References

  1. Allégre, C.J., Courtillot, V., Tapponnier, P., Hirn, A., Mattauer, M., Coulon, C., Jaeger, J.J., Achache, J., Scharer, U., Marcoux, J., Burg, J.P., Girardeau, J., Armijo, R., Gariepy, C., Gopel, C., Li, T.D., Xiao, X.C., Chang, C.F., Li, G.Q., Lin, B.Y., Teng, J.W., Wang, N.W., Chen, G.M., Han, T.L., Wang, X.B., Den, W.M., Sheng, H.B., Cao, Y.G., Zhou, J., Qiu, H.R., Bao, P.S., Wang, S.C., Wang, B.X., Zhou, Y.X. & Onghua, X. (1984) Structure and evolution of the Himalaya‐Tibet Orogenic Belt. Nature, 307, 17–22.
    [Google Scholar]
  2. Arnaud, N., Tapponnier, P., Roger, F., Brunel, M., Scharer, U., Wen, C. & Xu, Z.Q. (2003) Evidence for Mesozoic shear along the western Kunlun and Altyn‐Tagh fault, northern Tibet (China). J. Geophys. Res., 108, doi:DOI: 10.1029/2001JB0904.
    [Google Scholar]
  3. Burg, J‐P., Proust, F., Tapponnier, P. & Ming, C.G. (1983) Deformation phases and tectonic evolution of the Lhasa block (southern Tibet, China). Eclogae Geol. Helvet., 76, 643–665.
    [Google Scholar]
  4. Coulon, C., Maluski, H., Bollinger, C. & Wang, S. (1986) Mesozoic and Cenozoic volcanic rocks from central and southern Tibet: 39Ar–40Ar dating, petrological characteristics and geodynamical significance. Earth Planet. Sci. Lett., 79, 281–302.
    [Google Scholar]
  5. Cowgill, E., Yin, A., Harrison, T.M. & Wang, X.F. (2003) Reconstruction of the Altyn Tagh fault based on U–Pb geochronology: role of back thrusts, mantle sutures, and heterogeneous crustal strength in forming the Tibetan Plateau. J. Geophys. Res., 108, doi:DOI: 10.1029/2002JB02080.
    [Google Scholar]
  6. Dewey, J.F., Shackleton, R.M., Chengfa, C. & Yiyin, S. (1988) The tectonic evolution of the Tibetan plateau. Philos. Trans. Roy. Soc.Lon. Ser. A, 327, 379–413.
    [Google Scholar]
  7. DeCelles, P.G., Gehrels, G.E., Najman, Y., Martin, A., Carter, A. & Garzanti, E. (2004) Detrital geochronology and geochemistry of Cretaceous–Early Miocene strata of Nepal: implications for timing and diachroneity of initial Himalayan orogenesis. Earth Planet. Sci. Lett., 227, 313–330.
    [Google Scholar]
  8. Dickinson, W.R. & Suczek, C.A. (1979) Plate tectonics and sandstone compositions. Am. Assoc. Petrol. Geol. Bull., 63, 2164–2182.
    [Google Scholar]
  9. England, P.C. & Houseman, G.A. (1986) Finite strain calculations of continental deformation 2: application to the India–Asia plate collision. J. Geophys. Res., 91, 3664–3676.
    [Google Scholar]
  10. England, P.C. & Searle, M. (1986) The Cretaceous–Tertiary deformation of the Lhasa block and its implications for crustal thickening in Tibet. Tectonics, 5, 1–14.
    [Google Scholar]
  11. Gehrels, G.E. (2000) Introduction to detrital zircons studies of Paleozoic and Triassic strata in western Nevada and northern California. In: Paleozoic and Triassic Paleogeography and Tectonics of Western Nevada and Northern California (Ed. by M.J.Soreghan & G.E.Gehrels ), Geol. Soc. Am. Spec. Pap., 347, 1–17.
    [Google Scholar]
  12. Gehrels, G.E., Yin, A. & Wang, X.F. (2003a) Magmatic history of the northeastern Tibetan Plateau. J. Geophys. Res., 108, doi:DOI: 10.1029/2002JB01876.
    [Google Scholar]
  13. Gehrels, G.E., Yin, A. & Wang, X.F. (2003b) Detrital‐zircon geochronology of the northeastern Tibetan plateau. Geol. Soc. Am. Bull., 115, 881–896.
    [Google Scholar]
  14. Guynn, J.H., Kapp, P., Pullen, A., Heizler, M., Gerhels, G.E. & Lin, D. (2006) Tibetan basement rocks near Amdo reveal “missing” Mesozoic tectonism along the Bangong suture, central Tibet. Geology, 34, 505–508.
    [Google Scholar]
  15. He, S. (2005) Cretaceous–Tertiary upper crust deformation in southern Tibet. MS Thesis, University of Arizona, Tucson, 53pp.
  16. Hu, D.G., Wu, Z.H., Jiang, W., Shi, Y.R., Ye, P.S. & Liu, Q.S. (2005) SHRIMP zircon U–Pb age and Nd isotopic study on the Nyainqentanglha Group in Tibet. Sci. China, Ser. D-Earth Sci., 48, 1377–1386.
    [Google Scholar]
  17. Ingersoll, R.V., Bullard, T.F., Ford, R.L., Grimm, J.P., Pickle, J.D. & Sares, S.W. (1984) The effect of grain size on detrital modes: a test of the Gazzi-Dickinson point-counting method. J. Sediment. Petrol., 54, 103–116.
    [Google Scholar]
  18. Kapp, J.L.D., Harrison, T.M., Kapp, P., Grove, M., Lovera, O.M. & Ding, L. (2005) Nyainqentanglha Shan: a window into the tectonic, thermal, and geochemical evolution of the Lhasa block, southern Tibet. J. Geophys. Res., 110, B08413, doi:DOI: 10.1029/2004JB03330.
    [Google Scholar]
  19. Kapp, P., Murphy, M.A., Yin, A., Harrison, T.M., Ding, L. & Guo, J. (2003a) Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet. Tectonics, 22, doi:DOI: 10.1029/2001TC01332.
    [Google Scholar]
  20. Kapp, P., Yin, A., Manning, C.E., Harrison, T.M. & Taylor, M.H. (2003b) Tectonic evolution of the early Mesozoic blueschist‐bearing Qiangtang metamorphic belt, central Tibet. Tectonics, 22, doi:DOI: 10.1029/2002TC01383.
    [Google Scholar]
  21. Kapp, P., Yin, A., Harrison, M.T. & Ding, L. (2005) Cretaceous–Tertiary shortening, basin development and, and volcanism in central Tibet. Geol. Soc. Am. Bull., 117, 865–878.
    [Google Scholar]
  22. Kapp, P., Yin, A., Manning, C.E., Murphy, M.A., Harrison, T.M., Spurlin, M., Ding, L., Deng, X.G. & Wu, C.M. (2000) Blueschist‐bearing metamorphic core complexes in the Qiangtang block reveal deep crustal structure of northern Tibet. Geology, 28, 19–22.
    [Google Scholar]
  23. Kidd, W.S.F., Yusheng, P., Chengfa, C., Coward, M.P., Dewey, J.F., Gansser, A., Molnar, P., Shackleton, R.M. & Yiyin, S. (1988) Geological mapping of the 1985 Chinese‐British Tibetan (Xizang‐Qinghai) plateau Geotraverse route. Philos. Trans. Roy. Soc. Lond. Ser. A, 327, 287–305.
    [Google Scholar]
  24. Leeder, M.R., Smith, A.B. & Jixiang, Y. (1988) Sedimentology, palaeoecology and palaeoenvironmental evolution of the 1985 Lhasa to Golmud Geotraverse. Philos. Trans. Roy. Soc. Lond. Ser. A, 327, 107–143.
    [Google Scholar]
  25. Leier, A.L., DeCelles, P.G., Kapp, P. & Gehrels, G.E. in press, Lower Cretaceous strata in the Lhasa terrane, Tibet, with implications for understanding the early tectonic history of the Tibetan plateau. J. Sediment. Res.
    [Google Scholar]
  26. Leier, A.L., Kapp, P., DeCelles, P.G. & Ling, D.2007The Takena Formation of the Lhasa terrane, southern Tibet: the record of a Late Cretaceous retro-arc foreland basin. Geol. Soc. Am. Bull., 119, 31–48.
    [Google Scholar]
  27. Liu, Z.Q.C. (1988) Geologic Map of the Qinghai‐Xizang Plateau and Its Neighboring Regions, Scale: 1:1 500 000. Chengdu Institute of Geology and Mineral Resources, Geologic Publishing House, Beijing.
    [Google Scholar]
  28. Ludwig, K.R. (2001) Isoplot/Ex, rev. 2.49: Berkeley Geochronology Center Special Publication 1A, 56pp.
  29. McDermid, I.R.C., Aitchison, J.C., Davis, A.M., Harrison, T.M. & Grove, M. (2002) The Zedong terrane: a Late Jurassic intra-oceanic magmatic arc within the Yarlung-Tsangpo suture zone, southeastern Tibet. Chem. Geol., 187, 267–277.
    [Google Scholar]
  30. Miller, C., Schuster, R., Kotzli, U., Frank, W. & Grasemann, B. (2000) Late Cretaceous–Tertiary magmatic and tectonic events in the Transhimalayan batholith (Kailas area, SW Tibet). Schweiz Mineraol. Petrol., 80, 1–20.
    [Google Scholar]
  31. Murphy, M.A., Yin, A., Harrison, T.M., Dürr, S.B., Chen, Z., Ryerson, F.J., Kidd, W.S.F., Wang, X. & Zhou, X. (1997) Did the Indo‐Asian collision alone create the Tibetan Plateau?Geology, 25, 719–722.
    [Google Scholar]
  32. Palmer, A.R. & Geissman, J. (1999) Geologic Time Scale, The Geological Society of America, http://www.geosociety.org/science/timescale/timescl.pdf
  33. Pan, Y. (1993) Unroofing history and structural evolution of the southern Lhasa terrane, Tibetan Plateau: Implications for the continental collision between India and Asia, PhD Thesis, State University of New York, Albany, 287pp.
  34. Ratschbacher, L., Frisch, W., Chen, C. & Pan, G. (1993) Deformation and motion along the southern margin of the Lhasa block (Tibet) prior to and during the India‐Asia collision. J. Geodyn., 16, 21–54.
    [Google Scholar]
  35. Roger, F., Arnaud, N., Gilder, S., Tapponnier, P., Jolivet, M., Brunel, M., Malavielle, J., Xu, Z. & Yang, J. (2003) Geochronological and geochemical constraints on Mesozoic suturing in east central Tibet. Tectonics, 22, doi:DOI: 10.1029/2002TC01466.
    [Google Scholar]
  36. Roger, F., Malavielle, J., Leloup, Ph.H., Calassou, S. & Xu, Z. (2004) Timing of granite emplacement and cooling in the Songpan‐Garze fold belt (eastern Tibetan Plateau) with tectonic implications. J. Asian Earth Sci., 22, 465–481.
    [Google Scholar]
  37. Schwab, M., Ratschbacher, L., Siebel, W., McWilliams, M., Minaev, V., Lutkov, V., Chen, F., Stanek, K., Nelson, B., Frisch, W. & Wooden, J.L. (2004) Assembly of the Pamirs: age and origin of magmatic belts from southern Tien Shan to the southern Pamirs and their relation to Tibet. Tectonics, 23, doi: DOI: 10.1029/2003TC01583.
    [Google Scholar]
  38. Scotese, C.R. (2002) Earth history reconstructions: http//www.scotese.com/earth.htm
  39. Sengör, A.M.C. & Nata'lin, B.C. (1996) Paleotectonics of Asia: fragments of a synthesis. In: The Tectonic Evolution of Asia (Ed. by A.Yin & T.M.Harrison ), pp. 486–640. Cambridge University Press, Cambridge, UK.
    [Google Scholar]
  40. Stacey, J.S. & Kramers, J.D. (1975) Approximation of terrestrial lead isotope evolution by a two‐stage model. Earth Planet. Sci. Lett., 26, 207–221.
    [Google Scholar]
  41. Stampfli, G.M. & Borel, G. (2004) The TRANSMED transects in space and time: constraints on the paleotectonic evolution of the Mediterranean domain. In: The TRANSMED Atlas: The Mediterranean Region from Crust to Mantle (Ed. by W.Cavazza , F.Roure , W.Spakman , G.M.Stampfli & P.Ziegler ), pp. 53–80. Springer‐Verlag Publishing, New York, NY.
    [Google Scholar]
  42. Volkmer, J.E., Kapp, P., Guynn, J.H. & Lai, Q. (in press) Cretaceous–Tertiary evolution of the north‐central Lhasa terrane, Tibet. Tectonics.
    [Google Scholar]
  43. Wallis, S.R., Tsujimori, T., Aoya, M., Kawakami, T., Tereda, K., Suzuki, K. & Hyodo, H. (2003) Cenozoic and Mesozoic metamorphism in the Longmenshan orogen: implications for geodynamic models of eastern Tibet. Geology, 31, 745–748.
    [Google Scholar]
  44. Xu, R.H., Schaerer, U. & Allegre, C.J. (1985) Magmatism and metamorphism in the Lhasa block (Tibet): a geochronological study. J. Geol., 93, 41–57.
    [Google Scholar]
  45. Yin, A. & Harrison, T.M. (2000) Geologic evolution of the Himalayan‐Tibetan orogen. Ann. Rev. Earth Planet. Sci., 28, 211–280.
    [Google Scholar]
  46. Yin, J., Xu, J.T., Liu, C.J. & Li, H. (1988) The Tibetan plateau: regional stratigraphic context and previous work. Philos. Trans. Roy. Soc. Lond. Ser. A, 327, 5–52.
    [Google Scholar]
  47. Zhang, K.J. (2000) Cretaceous paleogeography of Tibet and adjacent areas (China): tectonic implications. Cretaceous Res., 21, 23–33.
    [Google Scholar]
  48. Zhang, K.J., Xia, B.D., Wang, G.M., Li, Y.T. & Ye, H.F. (2004) Early Cretaceous stratigraphy, depositional environments, sandstone provenance, and tectonic setting of central Tibet, western China. Geol. Soc. Am. Bull., 116, 1202–1222.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2007.00330.x
Loading
/content/journals/10.1111/j.1365-2117.2007.00330.x
Loading

Data & Media loading...

Supplements

Detrital zircon raw data.

Supporting info item

Supporting info item

Supporting info item

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error