1887
Volume 22 Number 6
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

Basement heat flow is one of the key unknowns in sedimentary basin analysis. Its quantification is challenging not in the least due to the various feedback mechanisms between the basin and lithosphere processes. This study explores two main feedbacks, sediment blanketing and thinning of sediments during lithospheric stretching, in a series of synthetic models and a reconstruction case study from the Norwegian Sea. Three types of basin models are used: (1) a newly developed one‐dimensional (1D) forward model, (2) a decompaction/backstripping approach and (3) the commercial basin modelling software TECMOD2D for automated forward basin reconstructions. The blanketing effect of sedimentation is reviewed and systematically studied in a suite of 1D model runs. We find that even for moderate sedimentation rates (0.5 mm year−1), basement heat flow is depressed by ∼25% with respect to the case without sedimentation; for high sedimentation rates (1.5 mm year−1), basement heat flow is depressed by ∼50%. We have further compared different methods for computing sedimentation rates from the presently observed stratigraphy. Here, we find that decompaction/backstripping‐based methods may systematically underestimate sedimentation rates and total subsidence. The reason for this is that sediments are thinned during lithosphere extension in forward basin models while there are not in backstripping/decompaction approaches. The importance of sediment blanketing and differences in modelling approaches is illustrated in a reconstruction case study from the Norwegian Sea. The thermal and structural evolution of a transect across the Vøring Basin has been reconstructed using the backstripping/decompaction approach and TECMOD2D. Computed total subsidence curves differ by up to ∼3 km and differences in computed basement heat flows reach up to 50%. These findings show that strong feedbacks exist between basin and lithosphere processes and that resolving them require integrated lithosphere‐scale basin models.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2009.00437.x
2009-10-26
2024-03-28
Loading full text...

Full text loading...

References

  1. Allen, P.A. & Allen, J.R. (2005) Basin Analysis: Principles and Applications, 2nd edn. Blackwell Publishing, Oxford.
    [Google Scholar]
  2. Athy, L.F. (1930) Density, porosity, and compaction of sedimentary rocks. AAPG Bull., 14, 1–24.
    [Google Scholar]
  3. Brekke, H. (2000) The tectonic evolution of the Norwegian Sea continental margin with emphasis on the Voring and More Basins. In: Dynamics of the Norwegian Margin (Ed. by A.Nottvedt , S.Olaussen , B.Torudbakken , R.H.Gabrielsen , H.Brekke , O.Birkeland & J.Skogseid ), Geol. Soc. Spec. Publ., 167, 327–378.
    [Google Scholar]
  4. Debremaecker, J.C. (1983) Temperature, subsidence, and hydrocarbon maturation in extensional basins – a finite‐element model. AAPG Bull.-Am. Assoc. Petrol. Geol., 67, 1410–1414.
    [Google Scholar]
  5. Deming, D. & Chapman, D.S. (1989) Thermal histories and hydrocarbon generation – example from Utah‐Wyoming Thrust Belt. AAPG Bull.-Am. Assoc. Petrol. Geol., 73, 1455–1471.
    [Google Scholar]
  6. Doin, M.P. & Fleitout, L. (1996) Thermal evolution of the oceanic lithosphere: an alternative view. Earth Planet. Sci. Lett., 142, 121–136.
    [Google Scholar]
  7. Doré, A.G., Lundin, E.R., Jensen, L.N., Birkeland, O., Eliassen, P.E. & Fichler, C. (1999) Principal tectonic events in the evolution of the northwest European Atlantic margin. In: Petroleum Geology of Northwest Europe: Proceedings of the 5th Conference (Ed. by A.J.Fleet & S.A.R.Boldy ), pp. 41–61. Geological Society, London.
    [Google Scholar]
  8. Færseth, R.B. & Lien, T. (2002) Cretaceous evolution in the Norwegian Sea – a period characterized by tectonic quiescence. Mar. Petrol. Geol., 19, 1005–1027.
    [Google Scholar]
  9. Faleide, J.I., Tsikalas, F., Breivik, A.J., Mjelde, R., Ritzmann, O., Engen, O., Wilson, J. & Eldholm, O. (2008) Structure and evolution of the continental margin off Norway and Barents Sea. Episodes, 31, 82–91.
    [Google Scholar]
  10. Fjeldskaar, W., Helset, H.M., Johansen, H., Grunnaleiten, I. & Horstad, I. (2008) Thermal modelling of magmatic intrusions in the Gjallar Ridge, Norwegian Sea: implications for Vitrinite reflectance and hydrocarbon maturation. Basin Res., 20, 143–159.
    [Google Scholar]
  11. Fjeldskaar, W., Ter Voorde, M., Johansen, H., Christiansson, P., Faleide, J.I. & Cloetingh, S. (2004) Numerical simulation of Rifting in the Northern Viking Graben: the mutual effect of Modelling parameters. Tectonophysics, 382, 189–212.
    [Google Scholar]
  12. Gernigon, L., Lucazeau, F., Brigaud, F., Ringenbach, J.C., Planke, S. & Le Gall, B. (2006) A moderate melting model for the Voring Margin (Norway) based on structural observations and a Thermo‐Kinematical Modelling: implication for the meaning of the lower Crustal bodies. Tectonophysics, 412, 255–278.
    [Google Scholar]
  13. Grunnaleite, I., Fjeldskaar, W., Wilson, J., Faleide, J.I. & Zweigel, J. (2009) Effect of local variations of vertical and horizontal stresses on the Cenozoic structuring of the Mid‐Norwegian Shelf. Tectonophysics, 470, 267–283.
    [Google Scholar]
  14. Jarvis, G.T. & McKenzie, D.P. (1980) Sedimentary basin formation with finite extension rates. Earth Planet. Sci. Lett., 48, 42–52.
    [Google Scholar]
  15. Kaus, B.J.P., Connolly, J.A.D., Podladchikov, Y.Y. & Schmalholz, S.M. (2005) Effect of mineral phase transitions on Sedimentary Basin subsidence and uplift. Earth Planet. Sci. Lett., 233, 213–228.
    [Google Scholar]
  16. Kooi, H., Cloetingh, S. & Burrus, J. (1992) Lithospheric necking and regional isostasy at extensional basins .1. Subsidence and gravity modeling with an application to the Gulf of Lions Margin (Se France). J. Geophys. Res.-Solid Earth, 97, 17553–17571.
    [Google Scholar]
  17. Kusznir, N.J. & Ziegler, P.A. (1992). The Mechanics of Continental Extension and Sedimentary Basin Formation – a Simple‐Shear Pure‐Shear Flexural Cantilever Model. Tectonophysics, 215, 117–131.
  18. Lucazeau, F. & Ledouaran, S. (1985) The blanketing effect of sediments in basins formed by extension – a numerical‐model – application to the Gulf of Lion and Viking Graben. Earth Planet. Sci. Lett., 74, 92–102.
    [Google Scholar]
  19. McKenzie, D. (1978) Some remarks on development of sedimentary basins. Earth Planet. Sci. Lett., 40, 25–32.
    [Google Scholar]
  20. Mjelde, R., Shimamura, H., Kanazawa, T., Kodaira, S., Raum, T. & Shiobara, H. (2003) Crustal lineaments, distribution of lower Crustal Intrusives and structural evolution of the Voring Margin, Ne Atlantic; new insight from wide‐angle seismic models. Tectonophysics, 369, 199–218.
    [Google Scholar]
  21. Prijac, C., Doin, M.P., Gaulier, J.M. & Guillocheau, F. (2000) Subsidence of the Paris Basin and its bearing on the Late Variscan lithosphere evolution: a comparison between plate and Chablis models. Tectonophysics, 323, 1–38.
    [Google Scholar]
  22. Reemst, P. & Cloetingh, S. (2000) Polyphase rift evolution of the Voring Margin (Mid‐Norway): constraints from forward Tectonostratigraphic modeling. Tectonics, 19, 225–240.
    [Google Scholar]
  23. Ren, S.C., Faleide, J.I., Eldholm, O., Skogseid, J. & Gradstein, F. (2003) Late cretaceous–Paleocene tectonic development of the Nw Voring Basin. Mar. Petrol. Geol., 20, 177–206.
    [Google Scholar]
  24. Rupke, L.H., Schmalholz, S.M., Schmid, D.W. & Podladchikov, Y.Y. (2008) Automated Thermotectonostratigraphic basin reconstruction: Viking Graben case study. AAPG Bull., 92, 309–326.
    [Google Scholar]
  25. Sclater, J.G. & Christie, P.A.F. (1980) Continental stretching: an explanation of the Post-Mid-Cretaeous Subsidense of the Central North Sea Basin. J. Geophys. Res., 85, 3711–3739.
    [Google Scholar]
  26. Simon, N.S.C. & Podladchikov, Y.Y. (2008) The effect of mantle composition on density in the extending Lithosphere. Earth Planet. Sci. Lett., 272, 148–157.
    [Google Scholar]
  27. Skogseid, J. & Eldholm, O. (1989) Voring plateau continental margin: seismic interpretation, Stratigraphy, and Vertical Movements. Proc. Ocean Drill. Progr., Sci. Res., 104, 993–1030.
    [Google Scholar]
  28. Skogseid, J., Planke, S., Faleide, J.I., Pedersen, T., Eldholm, O. & Neverdal, F. (2000) Ne Atlantic continental rifting and volcanic margin formation. In: Dynamics of the Norwegian Margin (Ed. by A.Nottvedt , B.T.Larsen , R.H.Gabrielsen , S.Olaussen , B.Torudbakken , J.Skogseid , H.Brekke & O.Birkeland ), Geol. Soc. Spec. Publ., 167, 295–326.
    [Google Scholar]
  29. Steckler, M.S. & Watts, A.B. (1978) Subsidence of Atlantic‐type Continental‐Margin off New‐York. Earth Planet. Sci. Lett., 41, 1–13.
    [Google Scholar]
  30. Sweeney, J.J. & Burnham, A.K. (1990) Evaluation of a simple‐model of Vitrinite reflectance based on chemical‐kinetics. Aapg Bull.-Am. Assoc. Petrol. Geol., 74, 1559–1570.
    [Google Scholar]
  31. Talwani, M. & Eldholm, O. (1972) Continental margin Off Norway – geophysical study. Geol. Soc. Am. Bull., 83, 3575–3603.
    [Google Scholar]
  32. Tervoorde, M. & Bertotti, G. (1994) Thermal effects of normal faulting during rifted basin formation .1. A finite‐difference model. Tectonophysics, 240, 133–144.
    [Google Scholar]
  33. Wangen, M. (1995) The blanketing effect in sedimentary basins. Basin Res., 7, 283–298.
    [Google Scholar]
  34. Wangen, M. & Faleide, J.I. (2008) Estimation of crustal thinning by accounting for stretching and thinning of the sedimentary basin – an example from the Vøring Margin, Ne Atlantic. Tectonophysics, 457, 224–238.
    [Google Scholar]
  35. Wangen, M., Fjeldskaar, W., Faleide, J.I., Wilson, J., Zweigel, J. & Austegard, A. (2008) Forward modeling of stretching episodes and Paleo Heat Flow of the Voring Margin, Ne Atlantic. J. Geodyn., 45, 83–98.
    [Google Scholar]
  36. Watts, A.B., Karner, G.D. & Steckler, M.S. (1982) Lithospheric flexure and the evolution of sedimentary basins. Philos. Trans. Roy. Soc. Lond. Ser.—Math. Phys. Eng. Sci., 305, 249–281.
    [Google Scholar]
  37. White, N. (1993) Recovery of strain‐rate variation from inversion of subsidence data. Nature, 366, 449–452.
    [Google Scholar]
  38. Zhang, Y.K. (1993) The thermal blanketing effect of sediments on the rate and amount of subsidence in sedimentary basins formed by extension. Tectonophysics, 218, 297–308.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2009.00437.x
Loading
/content/journals/10.1111/j.1365-2117.2009.00437.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error