1887
Volume 22 Number 6
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

Early Cenozoic terrestrial deposits in the western United States represent well‐preserved archives of climatic and tectonic processes that together shaped the Earth's surface during the demise of a large continental plateau. This study examines a Cenozoic terrestrial sedimentary sequence in the central part of the Cordilleran orogen (Montana) using sedimentologic and geochemical techniques. At ∼49 Ma, we observe rapid major shifts in oxygen, carbon and strontium isotope records that are too large to directly reflect changes in meteoric water composition due to simple orographic rainout. The transition to low‐δ18O values in pedogenic carbonate in concert with changes in the composition of clastic material at ∼49 Ma points to the input of evolved meteoric water to the hydrological cycle due to a change in the source of waters reaching Cordilleran intermontane regions in southwestern Montana. This drainage reorganization coincides with the initiation of magmatism and extension to the west in what is now Montana and Idaho. The sedimentological record shows evidence that depositional gradients increased in the study area ∼46 Ma, ∼3 Myr after the drainage reorganization occurred. This interval is most likely the time it took for extensional deformation to propagate to the study area itself. Evidence of freshening events in Laramide Basins to the southeast suggests that this drainage reorganization diverted waters to progressively fill these basins and highlights the impact of post‐plateau extension‐related landscape reorganization on river networks and lake dynamics. This study also emphasizes the importance of using multiple tools in deciphering topographic history through the study of terrestrial basin deposits, in that interpretation based on any single method employed would have compromised our ability to successfully identify the regional evolution of topography and drainage networks.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2009.00456.x
2010-01-12
2024-04-25
Loading full text...

Full text loading...

References

  1. Armstrong, R.L. (1974) Geochronometry of the Eocene volcanic–plutonic episode in Idaho. Northwest Geol., 3, 1–15.
    [Google Scholar]
  2. Asahara, Y., Tanaka, T., Kamioka, H. & Nishimura, A. (1995) Asian continental nature of 87Sr/86Sr ratios in north central Pacific sediments. Earth Planet. Sci. Lett., 133, 105–116.
    [Google Scholar]
  3. Boynton, W. (1984) Geochemistry of the rare earth elements: meteorite studies. In: Rare Earth Elements Geochemistry (Ed. by P.Henderson ), pp. 63–114. Elsevier Publishing, Amsterdam.
    [Google Scholar]
  4. Burke, W.H., Denison, R.E., Hetherington, E.A., Koepnick, R.B., Nelson, H.F. & Otto, J.B. (1982) Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology, 10, 516–519.
    [Google Scholar]
  5. Carroll, A.R., Chetel, L.M. & Smith, M.E. (2006) Feast to famine: sediment supply control on Laramide basin fill. Geology, 34, 197–200.
    [Google Scholar]
  6. Carroll, A.R., Doebbert, A.C., Booth, A.L., Chamberlain, C.P., Rhodes‐Carson, M.K., Smith, M.E., Johnson, C.M. & Beard, B.L. (2008) Capture of high‐altitude precipitation by a low‐altitude Eocene lake, western U.S. Geology, 36, 791–794.
    [Google Scholar]
  7. Cerling, T.E. (1984) The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth Planet. Sci. Lett., 71, 229–240.
    [Google Scholar]
  8. Cerling, T.E., Harris, J.M., MacFadden, B.J., Leakey, M.G., Quade, J., Eisenmass, V. & Ehleringer, J.R. (1997) Global vegetation change through the Miocene/Pliocene boundary. Nature, 389, 153–158.
    [Google Scholar]
  9. Cerling, T.E. & Quade, J. (1993) Stable oxygen and carbon isotopes in soil carbonates. Geophys. Monogr., 78, 217–231.
    [Google Scholar]
  10. Chamberlain, C.P. & Poage, M.A. (2000) Reconstructing the paleotopography of mountain belts from the isotopic composition of authigenic minerals. Geology, 28, 115–118.
    [Google Scholar]
  11. Chase, R.B., Bickford, M.E. & Tripp, S.E. (1978) Rb–Sr and U–Pb isotopic studies of the northeastern Idaho Batholith and border zone. Geol. Soc. Am. Bull., 89, 1325–1334.
    [Google Scholar]
  12. Chivas, A.R., Dedeckker, P., Cali, J.A., Chapman, A., Kiss, E. & Shelley, J.M.G. (1993) Coupled stable‐isotope and trace‐element measurements of lacustrine carbonates as paleoclimatic indicators. Geophys. Monogr., 78, 113–121.
    [Google Scholar]
  13. Clarke, C.B. (1990) The geochemistry of the Atlanta Lobe of the Idaho Batholith in the Western United States Cordillera. PhD Thesis. The Open University.
  14. Constenius, K.N. (1996) Late Paleogene extensional collapse of the Cordilleran foreland fold and thrust belt. Geol. Soc. Am. Bull., 108, 20–39.
    [Google Scholar]
  15. Criss, R.E. & Fleck, R.J. (1987) Petrogenesis, geochronology, and hydrothermal systems of the northern Idaho batholith and adjacent areas based on 18O/16O, D/H, 87Sr/86Sr, K–Ar, and 40Ar/38Ar studies. In: The Idaho Batholith and its Border Zone (Ed. by T.L.Vallier & H.C.Brooks ), U.S. Geol. Sur. Prof. Pap . 1436, 95–137.
    [Google Scholar]
  16. Davis, S.J., Mix, H.T., Wiegand, B.A., Carroll, A.R. & Chamberlain, C.P. (2009a) Synorogenic evolution of large‐scale drainage patters: isotope paleohydrology of sequential Laramide basins. Am. J. Sci. 309, 549–602.
    [Google Scholar]
  17. Davis, S.J., Mulch, A., Carroll, A.R., Horton, T.W. & Chamberlain, C.P. (2009b) Paleogene landscape evolution of the central North American Cordillera: developing topography and hydrology in the Laramide Foreland. Geol. Soc. Am. Bull., 121, 100–116.
    [Google Scholar]
  18. Davis, S.J., Wiegand, B.A., Carroll, A.R. & Chamberlain, C.P. (2008) The effect of drainage reorganization on paleoaltimetry studies: an example from the Paleogene Laramide Foreland. Earth Planet. Sci. Lett., 275, 258–268.
    [Google Scholar]
  19. De Renne, P. (1977) Rb–Sr isotope geology of the Idaho Batholith and some associated rocks. PhD Thesis, University of Idaho, Moscow.
  20. Dickinson, W.R., Klute, M.A., Hayes, M.J., Janecke, S.U., Lunden, E.R., McKittrick, M.A. & Olivares, M.D. (1988) Paleogeographic and paleotectonic setting of Laramide sedimentary basins in the central Rocky Mountain region. Geol. Soc. Am. Bull., 100, 1023–1039.
    [Google Scholar]
  21. Dickinson, W.R., Lawton, T.F. & Inman, K.F. (1986) Sandstone detrital modes, central Utah foreland region; stratigraphic record of Cretaceous–Paleogene tectonic evolution. J. Sediment. Res., 56, 276–293.
    [Google Scholar]
  22. Doe, B.R., Tilling, R.I., Hedge, C.E. & Klepper, M.R. (1968) Lead and strontium isotope studies of the Boulder Batholith, southwestern Montana. Bull. Soc. Econ. Geol., 63, 884–906.
    [Google Scholar]
  23. Doebbert, A.C., Carroll, A.R., Mulch, A., Chetel, L. & Chamberlain, C.P (2009) Geomorphic controls on lacustrine isotopic compositions: evidence from the Laney Member, Green River Formation (Wyoming). Geol. Soc. Am. Bull. 122, 236–252.
    [Google Scholar]
  24. Dostal, J., Breitsprecher, K., Church, B.N., Thorkelson, D. & Hamilton, T.S. (2003) Eocene melting of Precambrian lithospheric mantle: analcime-bearing volcanic rocks from the Challis-Kamloops belt of south central British Columbia. J. Volcan. Geotherm. Res., 126, 303–326.
    [Google Scholar]
  25. Feeley, T.C. (2003) Origin and tectonic implications of across‐strike geochemical variations in the Eocene Absaroka Volcanic Province, United States. J. Geol., 111, 329–346.
    [Google Scholar]
  26. Foster, D.A., Doughty, P.T., Kalakay, T.J., Fanning, C.M., Coyner, S., Grice, W.C. & Volg, J. (2007) Kinematics and timing of exhumation of metamorphic core complexes along the Lewis and Clark fault zone, northern Rocky Mountains, USA. Geol. Soc. Am. Spec. Pap, 434, 207–232.
    [Google Scholar]
  27. Fox, D.L. & Koch, P.L. (2003) Tertiary history of C4 biomass in the Great Plains, USA. Geology, 31, 800–812.
    [Google Scholar]
  28. Garzione, C.N., Hoke, G.D., Libarkin, J.C., Withers, S., Macfadden, B., Eiler, J., Ghosh, P. & Mulch, A. (2008) Rise of the Andes. Science, 320, 1304–1307.
    [Google Scholar]
  29. Garzione, C.N., Molnar, P., Libarkin, J.C. & Macfadden, B.J. (2006) Rapid late Miocene rise of the Bolivian Altiplano: evidence for removal of mantle lithosphere. Earth Planet. Sci. Lett., 241, 543–556.
    [Google Scholar]
  30. Garzione, C.N., Quade, J., De Celles, P.G. & English, N.B. (2000) Predicting paleoelevation of Tibet and the Himalaya from δ18O vs. altitude gradients in meteoric water across the Nepal Himalaya. Earth Planet. Sci. Lett., 183, 215–229.
    [Google Scholar]
  31. Gierlowsky‐Kordesch, E.H., Jacobson, A.D., Blum, J.D. & Valero Garces, B.L. (2008) Watershed reconstruction of a Paleocene–Eocene lake basin using Sr isotopes in carbonate rocks. Geol. Soc. Am. Bull., 120, 85–95.
    [Google Scholar]
  32. Graham, S.A., Chamberlain, C.P., Yue, Y., Ritts, B.D., Hanson, A.D., Horton, T.W., Waldbauer, J.R., Poage, M.A. & Feng, X. (2005) Stable isotope records of Cenozoic climate and topography, Tibetan Plateau and Tarim Basin. Am. J. Sci., 305, 101–118.
    [Google Scholar]
  33. Hall, S.M. & Veizer, J. (1996) Geochemistry of Precambrian carbonates: VII. Belt Supergroup, Montana and Idaho, USA. Geochim. Cosmochim. Acta, 60, 667–677.
    [Google Scholar]
  34. Hansen, W.R. (1985) Drainage development of the Green River Basin in southwestern Wyoming and its bearing on fish biogeography, neotectonics, and paleoclimates. Mount. Geol., 22, 192–204.
    [Google Scholar]
  35. Harlan, S.S., Premo, W.R., Unruh, D. & Geissman, J.W. (2005) Isotopic dating of Meso‐ and Neoproterozoic mafic magmatism in the Tobacco Root Mountains, southwestern Montana. Precambr. Res., 136, 269–281.
    [Google Scholar]
  36. Harms, J.C., Southard, J.B. & Walker, R.G. (1982) Structures and Sequences in Clastic Rocks. SEPM Short Course Notes, 9, 249 pp.
  37. Hiza, M.M. (1999) The geochemistry and geochronology of the Eocene Absaroka Volcanic Province, Northern Wyoming and Southwest Montana, USA. PhD Thesis, Oregon State University.
  38. Horton, T.W. & Chamberlain, C.P. (2006) Stable isotopic evidence for Neogene surface downdrop in the central Basin and Range province. Geol. Soc. Am. Bull., 118, 475–490.
    [Google Scholar]
  39. Horton, T.W., Sjostrom, D.J., Abruzzese, M.J., Poage, M.A., Waldbauer, J.R., Hren, M., Wooden, J. & Chamberlain, C.P. (2004) Spatial and temporal variation of Cenozoic surface elevation in the Great Basin and Sierra Nevada. Am. J. Sci., 304, 862–888.
    [Google Scholar]
  40. Janecke, S.U., Hammond, MB.F., Snee, L.W. & Geissman, J.W. (1997) Rapid extension in an Eocene volcanic arc: structure and paleogeography of an intra-arc half graben in central Idaho. Geol. Soc. Am. Bull., 109, 253–267.
    [Google Scholar]
  41. Janecke, S.U., Vandenburg, C.J., Blankenau, J.J. & M'Gonigle, J.W. (2000) Long‐distance longitudinal transport of gravel across the Cordilleran thrust belt of Montana and Idaho. Geology, 28, 439–442.
    [Google Scholar]
  42. Kent‐Corson, M.L., Sherman, L.S., Mulch, A. & Chamberlain, C.P. (2006) Cenozoic topographic and climatic response to changing tectonic boundary conditions in Western North America. Earth Planet. Sci. Lett., 252, 453–466.
    [Google Scholar]
  43. Kent‐Corson, M.L., Ritts, B.D., Zhuang, G., Bovet, P.M., Graham, S.A., Chamberlain, C.P. (2009) Stable isotopic constraints on the tectonic, topographic, and climatic evolution of the northern margin of the Tibetan Plateau. Earth Planet. Sci. Lett., 282, 158–166.
    [Google Scholar]
  44. King, E.M., Beard, B.L., Johnson, C.M., Valley, J.W. (2002) Oxygen and strontium istopic evidence for the abrupt and steeply‐dipping suture between lithospheric plates in the Idaho Batholith. Geol. Soc. Am. Abs. Prog., 34, p. 180.
    [Google Scholar]
  45. King, E.M., Beard, B.L. & Valley, J.W. (2007) Strontium and oxygen isotopic evidence for strike/slip movement of accreted terranes in the Idaho Batholith. Lithos, 96, 387–401.
    [Google Scholar]
  46. King, E.M. & Valley, J.W. (2001) The source, magmatic contamination, and alteration of the Idaho Batholith. Contrib. Mineral Petrol., 142, 72–88.
    [Google Scholar]
  47. Kirkham, D. & Powers, W.L. (1972) Advanced Soil Physics. Wiley‐Interscience, New York.
    [Google Scholar]
  48. Kupecz, J.A. & Land, L.S. (1991) Late‐stage dolomitization of the Lower Ordovician Ellenburger Group, west Texas. J. Sediment. Petrol., 61, 551–574.
    [Google Scholar]
  49. M'Gonigle, J.W. & Dalrymple, G.B. (1996) 40Ar/39Ar Ages of some Challis Volcanic Group and the initiation of Tertiary sedimentary basins in southwestern Montana. U.S. Geol. Surv. Bull., 2132, 17.
    [Google Scholar]
  50. Meen, J.K. & Eggler, D.H. (1987) Petrology and geochemistry of the Cretaceous Independence volcanic suite, Absaroka Mountains, Montana: clues to the composition of the Archean sub-Montanan mantle. Geol. Soc. Am. Bull., 98, 238–247.
    [Google Scholar]
  51. Mogk, D.W., Mueller, P.A. & Wooden, J.L. (1988) Archean tectonics of the North Snowy Block, Beartooth Mountains, Montana. J. Geol., 96, 125–141.
    [Google Scholar]
  52. Mueller, P.A., Shuster, R.D., Wooden, J.L., Ersley, E.A. & Bowes, D.R. (1993) Age and composition of Archean crystalline rocks from the southern Madison Range, Montana: implications for crustal evolution in the Wyoming craton. Geol. Soc. Am. Bull., 105, 437–446.
    [Google Scholar]
  53. Norman, M.D. & Leeman, W.P. (1989) Geochemical evolution of Cenozoic–Cretaceous magmatism and its relation to tectonic setting, southwestern Idaho, U.S.A. Earth Planet. Sci. Lett., 94, 78–96.
    [Google Scholar]
  54. O'Neil, J.R., Clayton, R.N. & Mayeda, T.K. (1969) Oxygen isotope fractionation in divalent metal carbonates. J. Chem. Phys., 51, 5547–5558.
    [Google Scholar]
  55. Palmer, M.R. & Edmond, J.M. (1992) Controls over the strontium isotope composition of river water. Geochim. Cosmochim. Acta, 56, 2099–2111.
    [Google Scholar]
  56. Perry, W.J. & Flores, R.M. (1997) Sequentia Laramide deformation and Paleocene depositional patterns in deep gas‐prone basins of the Rocky Mountain Region. U.S. Geol. Surv. Bull., 2146‐E, 49–59.
    [Google Scholar]
  57. Peterman, Z.E., Doe, B.R. & Protka, H.J. (1970) Lead and strontium isotopes in rocks of the Absaroka Volcanic Field, Wyoming. Contrib. Mineral. Petrol., 27, 121–130.
    [Google Scholar]
  58. Poage, M.A. & Chamberlain, C.P. (2001) Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters: considerations for studies of paleoelevation change. Am. J. Sci., 301, 1–15.
    [Google Scholar]
  59. Quade, J., Cater, J.M.L., Ojha, T.P., Adam, J. & Harrison, T.M. (1995) Late Miocene environmental change in Nepal and the northern Indian subcontinent: stable isotopic evidence from paleosols. Geol. Soc. Am. Bull., 107, 1381–1397.
    [Google Scholar]
  60. Quade, J. & Cerling, T.E. (1995) Expansion of C4 grasses in the Late Miocene of Northern Pakistan: evidence from stable isotopes in paleosols. Palaeogeogr. Palaeoclimatol Palaeoecol., 115, 91–116.
    [Google Scholar]
  61. Quade, J., Roe, L., De Celles, P.G. & Ojha, T.P. (1997) The Late Neogene 87Sr/86Sr record of lowland Himalayan rivers. Science, 276, 1828–1831.
    [Google Scholar]
  62. Renee, P.R., Swisher, C.C., Deino, A.L., Karner, D.B., Owens, T.L. & De Paolo, D.J. (1998) Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chem. Geol., 145, 117–152.
    [Google Scholar]
  63. Retallack, G.J. (2001) Soils of the Past, An Introduction to Paleopedology. Blackwell Science, Massachusetts, 404 pp.
    [Google Scholar]
  64. Rhodes, M.K., Carroll, A.R., Pietras, J.T., Beard, B.L. & Johnson, C.M. (2002) Strontium isotope record of paleohydrology and continental weathering, Eocene Green River Formation, Wyoming. Geology, 30, 167–170.
    [Google Scholar]
  65. Rowley, D.B., Pierrehumbert, R.T. & Currie, B.S. (2001) A new approach to stable isotope‐based paleoaltimetry: implications for paleoaltimetry and paleohypsometry of the High Himalaya since the Late Miocene. Earth Planet. Sci. Lett., 188, 253–268.
    [Google Scholar]
  66. Rozanski, K., Araguas‐Araguas, L. & Gonfiantini, R. (1993) Isotopic patterns in modern global precipitation. In: Climate Change in Continental Isotopic Records (Ed. by P.K.Swart , K.C.Lohmann , J.A.McKenzie & S.Savin ), Geophys. Monogr . 78, 1–36.
    [Google Scholar]
  67. Russell, C.W. & Gabites, J. (2005) Elevated 87Sr/86Sr ratios from mafic intrusions in the Atlanta Lobe of the Idaho Batholith. Idaho Geol. Surv. Tech. Rep., 05‐1.
  68. Sewall, J.O. & Sloan, L.C. (2006) Come a little bit closer: a high-resolution climate study of the early Paleogene Laramide foreland. Geology, 34, 81–84.
    [Google Scholar]
  69. Shuster, R.D. & Bickford, M.E. (1985) Chemical and isotopic evidence for the petrogenesis of the northeastern Idaho Batholith. J. Geol., 93, 727–742.
    [Google Scholar]
  70. Sklenar, S.E. & Anderson, D.W. (1985) Origin and early evolution of an Eocene lake system within the Washakie Basin on southwestern Wyoming. In: Cenozoic Paleogeography of the West Central United States (Ed. by R.M.Flores & S.S.Kaplan ), pp. 231–245. SEPM, Colorado.
    [Google Scholar]
  71. Smith, M.E., Carroll, A.R. & Singer, B.S. (2008) Synoptic reconstruction of a major ancient lake system: Eocene Green River Formation, western United States. Geol. Soc. Am. Bull., 120, 54–84.
    [Google Scholar]
  72. Smith, M.E., Singer, B.S. & Carroll, A.R. (2003) 40Ar/39Ar geochronology of the Eocene Green River Formation, Wyoming. Geol. Soc. Am. Bull., 115, 549–565.
    [Google Scholar]
  73. Stroup, C.N. (2008) Provenance of Cenozoic continental sandstones in southwest Montana: evidence from detrital Zircon. MS Thesis, Idaho State University, 117 pp.
  74. Surdam, R.C. & Stanley, K.O. (1980) Effects of changes in drainage‐basin boundaries on sedimentation on Eocene Lakes Gosiute and Uinta of Wyoming, Utah and Colorado. Geology, 8, 135–139.
    [Google Scholar]
  75. Tabrum, A.R., Prothero, D.R. & Garcia, D. (1996) Magnetostratigraphy and Biostratigraphy of the Eocene–Oligocene Transition, Southwestern Montana. In: The Terrestrial Eocene–Oligocene Transition in North America (Ed. by D.R.Prothero & R.J.Emry ), pp. 278–311. Cambridge University Press, New York.
    [Google Scholar]
  76. Unruh, D.M., Lund, K., Kuntz, M.A. & Snee, L.W. (2008) Uranium‐lead zircon ages and Sr, Nd, and Pb isotope geochemistry of selected plutonic rocks from western Idaho. U.S. Geol. Surv. Rep., OF 2008‐1142.
  77. Wernicke, B. (1992) Cenozoic extensional tectonics of the U.S. Cordillera. In: The Cordilleran Orogen: Conterminous U.S., The Geology of North America (Ed. by B.C.Burchfiel , P.W.Lipman & M.L.Zoback ), Spec. Pub. Geol. Soc. Am., G‐3, 553–581.
    [Google Scholar]
  78. Winston, D., Woods, M.E. & Byer, G.S. (1984) The case for an intracratonic Middle Proterozoic Belt‐Purcell basin: tectonic, stratigraphic, and stable isotopic considerations. In: Northwest Montana and Adjacent Canada: Montana Geological Society Field Conference Guidebook (Ed. by J.D.McBane & P.B.Garrison ), pp. 103–118. Montana Geological Society, Montana.
    [Google Scholar]
  79. Wolfe, J.A. (1994) Tertiary climatic changes at middle latitudes of Western North‐America. Palaeogeogr. Palaeoclimatol. Palaeoecol., 108, 195–205.
    [Google Scholar]
  80. Woodburne, M.O. & Swisher, C.C. (1995) Land mammal high‐resolution geochronology, intercontinental overland dispersals, sea level, climate, and vicariance. SEPM Spec. Publ., 54, 335–364.
    [Google Scholar]
  81. Wooden, J.L. & Mueller, P.A. (1988) Pb, Sr, and Nd isotopic compositions of a suite of Late Archean, igneous rocks, Eastern Beartooth Mountains: implications for crust-mantle evolution. Earth Planet. Sci. Lett., 87, 59–72.
    [Google Scholar]
  82. Wooden, J.L., Mueller, P.A. & Mogk, D.W. (1988) A review of the geochemistry and geochronology of the Archean rocks of the northern part of the Wyoming Province. In: Metamorphism and Crustal Evolution of the Western United States (Ed. by W.G.Ernst ), Rubey Vol. , 7, 383–410.
    [Google Scholar]
  83. Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billupsc, K. (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686–693.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2009.00456.x
Loading
/content/journals/10.1111/j.1365-2117.2009.00456.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error