1887
Volume 22, Issue 5
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

Fine‐grained Palaeogene–early Neogene strata of the South Caspian basin, specifically the Oligocene–Lower Miocene Maikop Series, are responsible for the bulk of hydrocarbon generation in the region. Despite the magnitude of oil and gas currently attributed to the source interval offshore, geochemical evaluation of 376 outcrop samples from the northern edge of the Kura basin (onshore eastern Azerbaijan) indicates that depositional conditions in these proximal strata along the basin margins were dominantly oxic to mildly suboxic/anoxic throughout three major depositional stages: the Palaeocene–Eocene, Oligocene–early Middle Miocene and late Middle–Late Miocene. Palaeocene–Eocene samples have low average total organic carbon (TOC) values (0.3%), with higher total inorganic carbon (TIC) values (average=2.6%), extremely low sulphur content (0.2%) and relatively high detrital input as indicated by Fe/Al and Ti/Al ratios. C–S–Fe associations, along with relatively lower concentrations of redox‐sensitive trace elements (e.g. V, Ni, Mo, U) indicate dominantly oxic environments of deposition during much of the Palaeocene–Eocene. A pronounced geochemical shift occurred near the Eocene–Oligocene boundary, and continued through the Early Miocene. Specifically, this interval is characterized by a distinct increase in TOC (ranging from 0.1 to 6.3% with an average of 1.5%), C–S–Fe associations that reveal an abrupt relative increase of carbon and sulphur with respect to iron‐dominated Palaeocene–Eocene samples, and higher concentrations of redox‐sensitive trace metals. These changes suggest that a shift away from unrestricted marine conditions and towards more variable salinity conditions occurred coincident with the initial collision of the Arabian plate and partial closure of the Paratethys ocean. Despite periodic basin restriction, the majority of Upper Eocene–Lower Miocene strata in the northern Kura basin record oxic to slightly dysoxic conditions.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2009.00427.x
2010-09-03
2024-03-29
Loading full text...

Full text loading...

References

  1. Abrams, M.A. & Narimanov, A.A. (1997) Geochemical evaluation of hydrocarbons and their potential sources in the western South Caspian depression, Republic of Azerbaijan. Mar. Petrol. Geol., 14, 451–468.
    [Google Scholar]
  2. Algeo, T.J. & Maynard, J.B. (2004) Trace‐element behavior and redox facies in core shales of Upper Pennsylvanian Kansas‐type cyclothems. Chem. Geol., 206, 289–318.
    [Google Scholar]
  3. Ali‐Zadeh, A.A., Ahmedov, H.A., Alitev, H‐M.A., Pavlova, V.A. & Khatskevich, N.I. (1975) Assessment of Oil Generative Properties of the Mesozoic–Cenozoic Deposits on Azerbaijan. Elm, Baku, 139pp.
    [Google Scholar]
  4. Allen, M.B. & Armstrong, H.A. (2008) Arabia–Eurasia collision and the forcing of mid Cenozoic global cooling. Palaeogeography, doi: DOI: 10.1016/j.palaeo.2008.04.021.
    [Google Scholar]
  5. Bazhenova, O.K., Fadeeva, N.P., Saint‐Germes, M.L. & Tikhomirova, E.E. (2003) Sedimentation conditions in the eastern Paratethys Ocean in the Oligocene–Early Miocene. Moscow Univ. Geol. Bull., 58 (6), 11–21.
    [Google Scholar]
  6. Berner, R.A. (1970) Sedimentary pyrite formation. Am. J. Sci., 268, 1–23.
    [Google Scholar]
  7. Brunet, M.F., Korotaev, M.V., Ershov, A.V. & Nikishin, A.M. (2002) The South Caspian Basin: a review of its evolution from subsidence modeling. Sediment. Geol., 156, 119–148.
    [Google Scholar]
  8. Codispoti, L.A. (1995) Is the ocean losing nitrate?Nature, 376, 724–726.
    [Google Scholar]
  9. Crusius, J., Calvert, S., Pederson, T. & Sage, D. (1996) Rhemium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition. Earth Planet. Lett., 145, 65–78.
    [Google Scholar]
  10. Dadashev, A.A., Feysulayev, A.A. & Tagiyev, M.F. (1986) On vertical zonality of oil and gas generation deduced from carbon isotopic composition of methane from Azerbaijan mud volcanoes. Oil Gas Geol. Geophys. Express Inf. Ser. Moscow, 6, 24–28. (in Russian).
    [Google Scholar]
  11. Dadashev, A.A. & Guliyev, I.S. (1989) Isotopic composition of carbon in methane from mud volcanoes as an indicator of the conditions of formation and the preservation of gases at depth in the South Caspian Basin. Izv. Akadem. Nauk Azerb. SSR, 1, 7–12.
    [Google Scholar]
  12. Dean, W.E. & Arthur, M.A. (1989) Iron–sulfur–carbon relationships in organic‐carbon‐rich sequences I: cretaceous interior seaway. Am. J. Sci., 289, 708–743.
    [Google Scholar]
  13. Efendiyeva, M.A. (2004) Anoxia in waters of the Maikop paleobasin (Tethys Ocean, Azeri sector), with implications for the modern Caspian Sea. Geo-Mar. Lett., 24 (3), 177–185.
    [Google Scholar]
  14. Emerson, S., Fischer, K., Reimers, C. & Heggie, D. (1985) Organic carbon dynamics and preservation in deep‐sea sediments. Deep Sea Reservoirs, 32, 1–22.
    [Google Scholar]
  15. Engleman, E.E., Jackson, L.L. & Norton, D.R. (1985) Determination of carbonate carbon in geological materials by coulometric titration. Chem. Geol., 53, 235–128.
    [Google Scholar]
  16. Ershov, A.V., Brunet, M.F., Nikishkin, A.M., Bolotov, S.N., Nazarevich, B.P. & Korotaev, M.V. (2003) Northern Caucasus basin: thermal history and synthesis of subsidence models. Sediment. Geol., 156, 95–118.
    [Google Scholar]
  17. Faure, G. (1998) Principles and Applications of Geochemistry. Prentice Hall, Princeton, NJ, 625pp.
    [Google Scholar]
  18. Feyzullayev, A.A., Guliyev, I.S. & Tagiyev, M.F. (2001) Source potential of the Mesozoic–Cenozoic rocks in the South Caspian Basin and their role in forming the oil accumulations in the Lower Pliocene reservoirs. Petrol. Geosci., 7, 409–417.
    [Google Scholar]
  19. Gautier, D.L. (1987) Isotopic composition of pyrite; relationship to organic matter type and iron availability in some North American Cretaceous shales. Chem. Geol., 65 (3–4), 293–303.
    [Google Scholar]
  20. Golonka, J. (2004) Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic. Tectonophysics, 381, 235–273.
    [Google Scholar]
  21. Golonka, J. (2007) Geodynamic evolution of the South Caspian Basin. In: Oil and Gas of the Greater Caspian Area (Ed. by P.O.Yilmaz , et al.) Am. Assoc. Petrol. Geol. Stud. Geol . 55, 17–41.
    [Google Scholar]
  22. Gradstein, F.M., Ogg, J.G. & Smith, A.G. (2004) A Geologic Time Scale 2004. Cambridge University Press, Cambridge, 610pp.
    [Google Scholar]
  23. Guliyev, I.S. & Feysullayev, A.A. (1996) Geochemistry of hydrocarbon seepages in Azerbaijan. In: Near Surface Expression of Hydrocarbon Migration (Ed. by D.Schumacher & M.A.Abrams ), Am. Assoc. Petrol. Geol. Mem ., 66, 63–70.
    [Google Scholar]
  24. Guliyev, I.S., Feysullayev, A.A. & Tagiyev, M.F. (1997) Isotopic‐geochemical characteristics of hydrocarbons in the South Caspian Basin. Energy, Explor. Exploit., 15, 311–368.
    [Google Scholar]
  25. Guliyev, I.S., Tagiyev, M.F. & Feyzullayev, A.A. (2001) Geochemical characteristics of organic matter from Maikop rocks of eastern Azerbaijan. Lithol. Mineral Resour., 36, 280–285.
    [Google Scholar]
  26. Hudson, S.M. (2008) Deciphering the early evolution of the caspian Sea: chemical characterization of cenozoic mudstones of Azerbaijan. PhD Dissertation, University of Utah, 296pp.
  27. Hudson, S.M., Johnson, C.L., Efendiyeva, M.A., Rowe, H.D., Feyzullayev, A.A. & Aliyev, C.A. (2008) Stratigraphy and geochemical characterization of the Oligocene–Miocene Maikop Series: implications for the paleogeography of eastern Azerbaijan. Tectonophysics, 451, 40–55.
    [Google Scholar]
  28. Inan, S., Yalcm, M.N., Guliyev, I.S., Kuliev, K. & Feyzullayev, A.A. (1997) Deep petroleum occurrences in the Lower Kura Depression, South Caspian Basin, Azerbaijan: an organic geochemical and basin modeling study. Mar. Petrol. Geol., 14, 731–762.
    [Google Scholar]
  29. Jackson, J., Priestley, K., Allen, M. & Berberian, M. (2002) Active Tectonics of the South Caspian Basin. Geophys. J. Int., 148, 214–245.
    [Google Scholar]
  30. Jones, B. & Manning, D.A.C. (1994) Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chem. Geol., 111, 111–129.
    [Google Scholar]
  31. Kaz'min, V.G. & Tikhonova, N.F. (2006) Late Cretaceous–Eocene marginal seas in the black sea‐Caspian region: paleotectonic reconstructions. Geotectonics, 40, 169–182.
    [Google Scholar]
  32. Khalilov, D.M. & Kuznetsova, Z.V. (1964) Microfauna and Stratigraphy of Azerbaijan Maikop Series in Maikop Deposits and Their Age Analogies in Ukraine and Middle Asia. Kiev, Naukova Dumka, 326pp (in Russian).
    [Google Scholar]
  33. Klosterman, M.J., Abrams, M.A., Aleskerov, E.A., Abdullayev, E.N., Guseinov, A.N. & Narimanov, A.A. (1997) Hydrocarbon system of the Evlakh–Agdzhabedi depression. Azerbycan Geol., 1, 90–119.
    [Google Scholar]
  34. Kopp, M.L. & Shcherba, I.G. (1998) Caucasian basin in the Paleogene. Geotectonics, 32 (2), 93–113.
    [Google Scholar]
  35. Leventhal, J.S. (1983) An interpretation of carbon and sulfur relationships in Black Sea sediments as indicators of environments of deposition. Geochim. Cosmochim. Acta, 47, 133–137.
    [Google Scholar]
  36. Lyons, W.T., Werne, J.P., Hollander, J.P. & Murray, R.W. (2003) Contrasting sulfur geochemistry and Fe/Al and Mo/Al ratios across the last oxic‐to‐anoxic transition in the Cariaco Basin, Venezuela. Chem. Geol., 195, 131–157.
    [Google Scholar]
  37. Martinez, N.C., Murray, R.W., Thunell, R.C., Peterson, L.C., Muller‐Karger, F., Astor, Y. & Varela, R. (2007) Modern climate forcing of terrigenous deposition in the tropics (Cariaco Basin, Venezuela). Earth Planet. Sci. Lett., 264, 438–451.
    [Google Scholar]
  38. Meyers, P.A. (1997) Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Organ. Geochem., 27, 213–250.
    [Google Scholar]
  39. Morford, J.L. & Emerson, S. (1999) The geochemistry of redox sensitive trace metals in sediments. Geochim. Cosmochim. Acta, 63, 1735–1750.
    [Google Scholar]
  40. Müller, P.J. (1977) C/N ratios of marine sediments: effect of inorganic ammonium and sorbed organic nitrogen of clays. Geochim. Cosmochim. Acta, 41, 765–776.
    [Google Scholar]
  41. Nadirov, R.S., Bagirov, E., Tagiyev, M. & Lerche, I. (1997) Flexural plate subsidence, sedimentation rates, and structural development of the super‐deep South Caspian Basin. Mar. Petrol. Geol., 14 (4), 383–400.
    [Google Scholar]
  42. Peters, K.E. & Cassa, M.R. (1994) Applied source rock geochemistry. Am. Assoc. Petrol. Geol. Mem., 60, 93–120.
    [Google Scholar]
  43. Poulton, S.W. & Canfield, D.E. (2005) Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates. Chem. Geol., 214, 209–221.
    [Google Scholar]
  44. Raiswell, R. & Berner, R.A. (1986) Pyrite and organic matter in Phanerozoic normal marine shales. Geochim. Cosmochim. Acta, 50, 1967–1976.
    [Google Scholar]
  45. Raiswell, R., Buckley, F., Berner, R.A. & Anderson, T.F. (1988) Degree of pyritization as a paleoenvironmental indicator of bottom water oxygenation. J. Sediment. Petrol., 58, 812–819.
    [Google Scholar]
  46. Rögl, F. (1999) Mediterranean and Paratethys. Facts and Hypotheses of an Oligocene to Miocene Paleogeography (short overview). Geol. Carpathica, 50, 339–349.
    [Google Scholar]
  47. Rousseau, R.M. (2001) Detection limit and estimate of uncertainty of analytical XRF results. Rikagu J., 18, 33–47.
    [Google Scholar]
  48. Saint‐Germes, M., Baudin, F., Bazhenova, O., Derenne, S., Fadeeva, N. & Largeau, C. (2002) Origin and preservation processes of amorphous organic matter in the Maikop Series (Oligocene–Lower Miocene) of the Caucasus Foreland and Azerbaijan. Bull. Soc. Geol. France, 173 (5), 423–436.
    [Google Scholar]
  49. Saintot, A., Brunet, M.‐F., Yakovlev, F., Sebrier, M., Stpehenson, R., Ershov, A., Chalot‐Prat, F. & McCann, T. (2006) The Mesozoic–Cenozoic tectonic evolution of the Greater Caucasus. Mem. Geol. Soc. Lond., 32, 277–289.
    [Google Scholar]
  50. Schultz, H.M., Bechtel, A. & Sachsenhofer, R.F. (2005) The birth of the Paratethys during the early Oligocene: from Tethys to an Ancient Black Sea Analogue? Global Planet. Change, 49, 163–176.
    [Google Scholar]
  51. Studencka, B., Gontsharova, I.A. & Popov, S.V. (1998) The bivalve faunas as a basis for reconstruction of the Middle Miocene history of the Paratethys. Acta Geol. Pol., 48, 285–342.
    [Google Scholar]
  52. Tagiyev, M.F., Nadirov, R.S., Bagirov, E.B. & Lerche, I. (1997) Geohistory, thermal history and hydrocarbon generation history of the north‐west South Caspian basin. Mar. Petrol. Geol., 14, 363–382.
    [Google Scholar]
  53. Torres, M.A. (2007) The petroleum geology of Western Turkmenistan: the Gograndag–Okarem province. In: Oil and Gas of the Greater Caspian Area (Ed. by P.O.Yilmaz & G.H.Isaksen ), AAPG Stud. Geol . 55, 109–132.
    [Google Scholar]
  54. Tribovillard, N., Algeo, T.J., Lyons, T. & Riboulleau, A. (2006) Trace metals as paleoredox and paleoproductivity indicators: an update. Chem. Geol., 232, 12–32.
    [Google Scholar]
  55. Turekian, K.K. & Wedepohl, K.H. (1961) Distribution of the elements in some major units of the Earth's crust. Geol. Soc. Am. Bull., 72, 175–192.
    [Google Scholar]
  56. Vincent, S.J., Allen, M.B., Ismail‐Zadeh, A.D., Flecker, R., Foland, K. & Simmons, M. (2005) Insights from the Talysh of Azerbaijan in to the Paleogene evolution of the South Caspian region. Geol. Soc. Am. Bull., 177 (11/12), 1513–1533.
    [Google Scholar]
  57. Vincent, S.J., Morton, A.C., Carter, A., Gibbs, S. & Barabadze, T.G. (2007) Oligocene uplift of the Western Greater Caucasus: an effect of initial Arabia–Eurasia collision. Terra Nova, 19, 160–166.
    [Google Scholar]
  58. Wavrek, D.A., Curtiss, D.K., Guliyev, I.S. & Feyzullayev, A.A. (1998) Maikop/diatom‐productive series (!) petroleum system, South Caspian Basin, Azerbaijan. AAPG Bull., 82 (13), 2.
    [Google Scholar]
  59. Wedepohl, K.H. (1971) Environmental influences on the chemical composition of shales and clays. In: Physics and Chemistry of the Earth, Vol. 8 (Ed. by L.H.Ahrens , F.Press , S.K.Runcorn & H.C.Urey ), pp. 305–333. Pergamon, Oxford.
    [Google Scholar]
  60. Wedepohl, K.H. (1991) The composition of the upper earth's crust and the natural cycles of selected metals. In: Metals and Their Compounds in the Environment (Ed. by E.Merian ), pp. 3–17. VCH, Weinheim.
    [Google Scholar]
  61. Zonenshain, L.P. & Le Pichon, X. (1986) Deep basins of the Black Sea and Caspian Sea as remnants of Mesozoic back‐arc basins. Tectonophysics, 123, 181–211.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2009.00427.x
Loading
/content/journals/10.1111/j.1365-2117.2009.00427.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error