1887
Volume 18, Issue 1
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

The arid Puna plateau of the southern Central Andes is characterized by Cenozoic distributed shortening forming intramontane basins that are disconnected from the humid foreland because of the defeat of orogen‐traversing channels. Thick Tertiary and Quaternary sedimentary fills in Puna basins have reduced topographic contrasts between the compressional basins and ranges, leading to a typical low‐relief plateau morphology. Structurally identical basins that are still externally drained straddle the eastern border of the Puna and document the eastward propagation of orographic barriers and ensuing aridification. One of them, the Angastaco basin, is transitional between the highly compartmentalized Puna highlands and the undeformed Andean foreland. Sandstone petrography, structural and stratigraphic analysis, combined with detrital apatite fission‐track thermochronology from a ∼6200‐m‐thick Miocene to Pliocene stratigraphic section in the Angastaco basin, document the late Eocene to late Pliocene exhumation history of source regions along the eastern border of the Puna (Eastern Cordillera (EC)) as well as the construction of orographic barriers along the southeastern flank of the Central Andes.

Onset of exhumation of a source in the EC in late Eocene time as well as a rapid exhumation of the Sierra de Luracatao (in the EC) at about 20 Ma are recorded in the detrital sediments of the Angastaco basin. Sediment accumulation in the basin began ∼15 Ma, a time at which the EC had already built sufficient topography to prevent Puna sourced detritus from reaching the basin. After ∼13 Ma, shortening shifted eastward, exhuming ranges that preserve an apatite fission‐track partial annealing zone recording cooling during the late Cretaceous rifting event. Facies changes and fossil content suggest that after 9 Ma, the EC constituted an effective orographic barrier that prevented moisture penetration into the plateau. Between 3.4 and 2.4 Ma, another orographic barrier was uplifted to the east, leading to further aridification and pronounced precipitation gradients along the mountain front. This study emphasizes the important role of tectonics in the evolution of climate in this part of the Andes.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2006.00283.x
2006-03-07
2024-04-20
Loading full text...

Full text loading...

References

  1. Adelmann, D. (2001) Känozoische Beckenentwicklung in der südlichen Puna am Beispiel des Salar de Antofolla (NW‐Argentinien). PhD Thesis, Frei Universität Berlin, Berlin, 180 pp.
  2. Allmendinger, R.W., Jordan, T.E., Kay, S.M. & Isacks, B.L. (1997) The evolution of the Altiplano‐Puna plateau of the central Andes. Annu. Rev. Earth Planet. Sci., 25, 139–174.
    [Google Scholar]
  3. Alonso, R. (1992) Estratigrafía del Cenozoico de la cuenca Pastos Grandes (Puna Salteña) con énfasis en la Formación Sijes y sus boratos. Rev. Asoc. Geol. Argentina, 47, 189–199.
    [Google Scholar]
  4. Alonso, R.N., Jordan, T.E., Tabutt, K.T. & Vandervoort, D.S. (1991) Giant evaporite belts of the Neogene central Andes. Geology, 19, 401–404.
    [Google Scholar]
  5. Alpers, C.N. & Brimhall, G.H. (1988) Middle Miocene climatic change in the Atacama Desert, northern Chile; evidence from supergene mineralization at La Escondida. Geol. Soc. Am. Bull., 100 (10), 1640–1656.
    [Google Scholar]
  6. Andriessen, P.A.M. & Reutter, K.J. (1994) K–Ar and fission track mineral age determination of igneous rocks related to multiple magmatic arc systems along the 23°S latitude of Chile and NW Argentina. In: Tectonics of the Southern Central Andes (Ed. by K.‐J.Reutter , E.Scheuber & P.Wigger ), pp. 141–153. Springer, Berlin.
    [Google Scholar]
  7. Anzótegui, L.M. (1998) Hojas de Angiospermas de la Formación Palo Pintado, Mioceno superior, Salta, Argentina, Parte I: Anacardiaceae, Lauraceae y Moraceae. Ameghiniana, 35 (1), 25–32.
    [Google Scholar]
  8. Basu, A. (1976) Petrology of Holocene fluvial sand derived from plutonic source rocks: implication to paleoclimatic interpretation. J. Sedim. Petrol., 46, 694–709.
    [Google Scholar]
  9. Batt, G.E. & Brandon, M.T. (2002) Lateral thinking: 2-D interpretation of thermochronology in convergent orogenic settings. Tectonophysics, 349, 185–201.
    [Google Scholar]
  10. Bernet, M., Zattin, M., Garver, J.I., Brandon, M.T. & Vance, J.A. (2001) Steady‐state exhumation of the European Alps. Geology, 29, 35–38.
    [Google Scholar]
  11. Bianchi, A.R. & Yañez, C.E. (1992) Las precipitaciones en el noroeste Argentino: Salta, Instituto Nacíonal de Tecnología Agropecuaria, Estacíon Agropecuaria, 35pp.
  12. Bianucci, H., Acevedo, O. & Cerdan, J. (1981) Evolución tecto‐sedimentaria del Grupo Salta en la subcuenca Lomas de Olmedo (Provincias de Salta y Formaso). Congr. Geol. Argent., VIII, 159–172.
    [Google Scholar]
  13. Blackwell, D.D. & Steele, J.L. (1988) Thermal conductivity of sedimentary rocks: measurement and significance. In: Thermal History of Sedimentary Basins – Methods and Case Histories (Ed. by N.D.Naeser & T.H.McCulloh ), pp. 13–36. Springer, Berlin.
    [Google Scholar]
  14. Bossi, G.E., Georgieff, S.M., Gavriloff, I.J.C., Ibáñez, L.M. & Muruaga, C.M. (2001) Cenozoic evolution of the intramontane Santa Maria basin, Pampean Ranges, northwestern Argentina. J. South Am. Earth Sci., 14, 725–734.
    [Google Scholar]
  15. Brandon, M.T. (1992) Decomposition of fission‐track grain‐age distributions. Am. J. Sci., 292, 535–564.
    [Google Scholar]
  16. Brandon, M.T. (1996) Probability density plots for fission‐track age distributions. Rad. Meas., 26, 663–676.
    [Google Scholar]
  17. Brandon, M.T. (2002) Decomposition of mixed grain age distributions using binomfit. On Track, 24, 13–18.
    [Google Scholar]
  18. Brandon, M.T., Roden‐Tice, M.K. & Garver, J.I. (1998) Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, northwest Washington State. Geol. Soc. Am. Bull., 110, 985–1009.
    [Google Scholar]
  19. Braun, J. (2002) Estimating exhumation rate and relief evolution by spectral analysis of age‐elevation datasets. Terra Nova, 14, 210–214.
    [Google Scholar]
  20. Brewer, I.D., Burbank, D.W. & Hodges, K.V. (2003) Modelling detrital cooling‐age populations: insights from two Himalayan catchments. Basin Res., 15, 305–320.
    [Google Scholar]
  21. Carrapa, B., Adelmann, D., Hilley, G.E., Mortimer, E., Sobel, E.R. & Strecker, M.R. (2005) Oligocene range uplift and development of plateau morphology in the southern Central Andes. Tectonics, 24, TC4011. doi:10.1029/2004TC001762.
    [Google Scholar]
  22. Cerveny, P.F., Naeser, N.D., Zeitler, P.K., Naeser, C.W. & Johnson, N.M. (1988) History of uplift and relief of the Himalaya during the past 18 million years; evidence from sandstones of the Siwalik Group. In: New Perspectives in Basin Analysis (Ed. by K.L.Kleispehn & C.Paola ), pp. 43–61. Springer‐Verlag, Berlin.
    [Google Scholar]
  23. Compston, W., Williams, I.S. & Meyer, C. (1984) U–Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass‐resolution ion microprobe. J. Geophys. Res., 89 (Suppl.), B525–B534.
    [Google Scholar]
  24. Coughlin, T.J., O'Sullivan, P.B., Kohn, B.P. & Holcombe, R.J. (1998) Apatite fission‐track thermochronology of the Sierras Pampeanas, central western Argentina; implications for the mechanism of plateau uplift in the Andes. Geology, 26 (11), 999–1002.
    [Google Scholar]
  25. Coutand, I. (1999) Tectonique cénozoïque du haut plateau de la Puna, Nord‐Ouest argentin, Andes Centrales. PhD, Université de Rennes 1.
  26. Coutand, I., Cobbold, P.R., de Urreiztieta, M., Gautier, P., Chauvin, A., Gapais, D., Rossello, E.A. & López‐Gamundí, O. (2001) Style and history of Andean deformation, Puna plateau, northwestern Argentina. Tectonics, 20 (2), 210–234.
    [Google Scholar]
  27. Deeken, A.D., Sobel, E.R., Haschke, M.R., Strecker, M.R. & Riller, U. (2004) Age of initiation and growth pattern of the Puna Plateau, NW‐Argentina, constrained by AFT thermochronology. In 10th International Fission Track 2004 Conference, Amsterdam.
  28. Deming, D., Nunn, J.A. & Evans, D.G. (1990) Thermal effects of compaction‐driven groundwater flow from overthrust belts. J. Geophys. Res., 95 (5), 6669–6683.
    [Google Scholar]
  29. DiGiulio, A. (1990) Litostratigrafia e petrografia della successione Eo‐Oligocenica del Bacino Terziario Ligure‐Piemontese nell'area compresa tra le Valli Grue e Curone (provincia di Alessandria, Italia Settentrionale). Boll. Soc. Geol. Ital., 109, 279–298.
    [Google Scholar]
  30. DiGiulio, A. & Valloni, R. (1992) Sabbie e areniti, analisi ottica e classificazione. Acta Nat., 28, 55–101.
    [Google Scholar]
  31. Dickinson, W.R. (1970) Interpreting detrital modes of greywacke and arkose. J. Sedim. Petrol., 40, 695–707.
    [Google Scholar]
  32. Donelick, M.B., Ketcham, R.A. & Carlson, W.D. (1999) Variability of apatite fission‐track annealing kinetics: II. Crystallographic orientation effects. Am. Mineral., 84, 1224–1234.
    [Google Scholar]
  33. Dumitru, T.A. (1993) A new computer‐automated microscope stage system for fission track analysis. Nucl. Tracks Radiat. Meas., 21, 575–580.
    [Google Scholar]
  34. Dunkl, I. (2002) Trackkey: windows program for calculation and graphical presentation of EDM fission track data, version 4.2: http://www.gzg.uni‐goettingen.de/forschung/abt_sediment/sed_mitarb/website_id/softwares/trackkey.html.
  35. Durand, F. (1992) Avances y problemas en la definición del límite Precámbrico‐Cámbrico en el Noroeste Argentino. In: El Paleozoico Inferior en Latinoamerica y la Génesis del Gondwana (Univ. Nacl Tucumán 9, 127–138.
    [Google Scholar]
  36. Díaz, J.I. & Malizzia, D.C. (1983) Estudio geológico y sedimentológico del Terciario Superior del valle Calchaquí (departamento de San Carlos, provincia de Salta). Bol. Sedimentol., 2, 8–28.
    [Google Scholar]
  37. Díaz, J.I., Malizzia, D.C. & Bossi, G.E. (1987) Análisis estratigráfico y sedimentológico del Grupo Payogastilla (Terciario superior). Dec. Congr. Geol. Argent., 113–117.
    [Google Scholar]
  38. Díaz, J.I. & Miserendino Fuentes, A. (1988) El ambito deposicional y tectonico del Grupo Payogastilla (Provincia de Salta, Republica Argentina). Congr. Geol. Chil., 39, 87–103.
    [Google Scholar]
  39. Folk, R.L. (1968) Petrology of Sedimentary Rocks. Hemphill Publishing Co., Austin, TX, 182pp.
    [Google Scholar]
  40. Galbraith, R.F. (1981) On statistical models for fission track counts. Math. Geol., 13, 471–478.
    [Google Scholar]
  41. Galbraith, R.F. & Green, P.F. (1990) Estimating the component ages in a finite mixture. Nucl. Tracks Radiat. Meas., 17, 197–206.
    [Google Scholar]
  42. Gallagher, K. (1995) Evolving temperature histories from apatite FT data. Earth Planet. Sci. Lett., 136, 421–435.
    [Google Scholar]
  43. Garven, G. (1989) A hydrogeologic model for the formation of the giant oil sands deposits of the Western Canada sedimentary basin. Am. J. Sci., 289, 105–166.
    [Google Scholar]
  44. Garver, J.I., Brandon, M.T., Roden‐Tice, M. & Kamp, P.J.J. (1999) Exhumation history of orogenic highlands determined by detrital fission‐track thermochronology. In: Exhumation Processes: Normal Faulting, Ductile Flow and Erosion (Ed. by U.Ring , M.T.Brandon , G.S.Lister & S.D.Willett ), Geol. Soci. Lond , 154, 283–304.
    [Google Scholar]
  45. Gazzi, P. (1966) Le arenarie del Flysh opra‐cretaceo dell'Appennino modenese; correlazioni con il Flysh di Monghidoro. Mineral. Petrogr. Acta, 12, 69–97.
    [Google Scholar]
  46. Gleadow, A.J.W. & Duddy, I.R. (1981) A natural long‐term annealing experiment for apatite. Nucl. Tracks, 5, 169–174.
    [Google Scholar]
  47. Green, P.F. (1981) A new look at statistics in fission track dating. Nucl. Tracks Radiat. Meas., 5, 77–86.
    [Google Scholar]
  48. Green, P.F., Duddy, I.R., Gleadow, A.J.W. & Tingate, P.R. (1985) Fission track annealing in apatite: track length measurements and the form of the Arrhenius plot. Nucl. Tracks Radiat. Meas., 10, 323–328.
    [Google Scholar]
  49. Green, P.F., Duddy, I.R., Gleadow, A.J.W., Tingate, P.R. & Laslett, G.M. (1986) thermal annealing of fission tracks in apatite, 1. A qualitative description. Chem. Geol., 59, 237–253.
    [Google Scholar]
  50. Grier, M.E. (1990) The influence of the Cretaceous Salta rift basin on the development of andean structural geometries. PhD, Cornell University, NW Argentine Andes.
  51. Grier, M.E. & Dallmeyer, R.D. (1990) Age of the Payogastilla Group: implication for foreland basin development, NW Argentina. J. South. Am. Earth Sci., 3 (4), 269–278.
    [Google Scholar]
  52. Grier, M.E., Salfity, J.A. & Allmendinger, R.W. (1991) Andean reactivation of the Cretaceous Salta rift, northwestern Argentina. J. South Am. Earth Sci., 4 (4), 351–372.
    [Google Scholar]
  53. Hartley, A.J. (2003) Andean uplift and climate change. J. Geol. Soc. Lond., 160 (1), 7–10.
    [Google Scholar]
  54. Haselton, K., Hilley, G.E. & Strecker, M.R. (2002) Average Pleistocene climatic patterns in the southern central Andes: controls on mountain glaciation and paleoclimate implications. J. Geol., 110, 211–226, doi: 10.1086/338414.
    [Google Scholar]
  55. Hilley, G.E. & Strecker, M.R. (2004) Steady state erosion of critical Coulomb wedges with applications to Taiwan and the Himalaya. J. Geophys. Res., 109, B01411. doi:10.1029/2002JB002284.
    [Google Scholar]
  56. Hilley, G.E. & Strecker, M.R. (2005) Processes of oscillatory basin filling and excavation in a tectonically active orogen: Quebrada del Toro Basin, NW Argentina. Geol. Soc. Am. Bull., 117 (7/8), 887–901.
    [Google Scholar]
  57. Hongn, F., Seggiaro, R. & Ramalio, E. (1999) Cachi, 2566‐III. SEGEMAR, Instituto de Geologia y Recursos Minerales.
  58. Horton, B.K. (2005) Revised deformation history of the central Andes: inferences from Cenozoic foredeep and intermontane basins of the Eastern Cordillera, Bolivia. Tectonics, 24, TC3011. doi :10.1029/2003TC001619.
    [Google Scholar]
  59. Horton, B.K., Hampton, B.A., LaReau, B.N. & Baldellòn, E. (2002) Tertiary provenance history of the northern and central Altiplano (Central Andes, Bolivia): a detrital record of the plateau-margin tectonics. J. Sed. Res., 72 (5), 711–726.
    [Google Scholar]
  60. Hurford, A.J. (1986) Cooling and uplift patterns in the Lepontine Alps, South Central Switzerland and an age of vertical movement on the Insubric fault line. Contrib. Mineral. Petrol., 92, 413–427.
    [Google Scholar]
  61. Hurford, A.J. (1990) Standardization of fission‐track dating calibration: recommendation by the Fission Track Working Group of the I.U.G.S. Subcommission on geochronology. Chem. Geol., 80, 171–178.
    [Google Scholar]
  62. Hurford, A.J. & Green, P.F. (1983) The zeta age calibration of fission‐track dating. Isot. Geosci., 1, 285–317.
    [Google Scholar]
  63. Ingersoll, R.V., Bullard, T.F., Ford, R.L., Grimm, J.P. & Pickle, J.D. (1984) The effect of grain size on detrital modes: a test of the Gazzi–Dickinson point-counting method. J. Sedim. Petrol., 54 (1), 103–116.
    [Google Scholar]
  64. Isacks, B.L. (1988) Uplift of the Central Andean Plateau and bending of the Bolivian Orocline. J. Geophys. Res., 93 (B4), 3211–3231.
    [Google Scholar]
  65. Jordan, T.E. & Alonso, R.N. (1987) Cenozoic stratigraphy and basin tectonics of the Andes Mountain, 20–28° South latitude. Am. Assoc. Petrol. Geol. Bull., 71 (1), 49–64.
    [Google Scholar]
  66. Jordan, T.E., Reynolds, J.H. & Erikson, J.P. (1997) Variability in age of initial shortening and uplift in the central Andes, 16–33°30′S. In: Tectonic Uplift and Climate Change (Ed. by W.F.Ruddiman ), pp. 41–61. Plenum Press, New York.
    [Google Scholar]
  67. Kay, S.M., Coira, B. & Viramonte, J. (1994) Young mafic back‐arc volcanic rocks as indicators of continental lithospheric delamination beneath the Argentine Puna Plateau, Central Andes. J. Geophys. Res., 99, 24323–24340.
    [Google Scholar]
  68. Ketcham, R.A., Donelick, R.A. & Carlson, W.D. (1999) Variability of apatite fission‐track annealing kinetics: III. Extrapolation to geological time scales. Am. Mineral., 84, 1235–1255.
    [Google Scholar]
  69. Ketcham, R.A., Donelick, R.A. & Donelick, M.B. (2000) AFTSolve: a program for multi-kinetic modeling of apatite fission-track data. Geol. Mat. Res., 2 (1), 1–32.
    [Google Scholar]
  70. Kleinert, K. & Strecker, M.R. (2001) Climate change in response to orographic barrier uplift: paleosol and stable isotope evidence from the late Neogene Santa Maria basin, northwestern Argentina. Geol. Soc. Am. Bull., 113 (6), 728–742.
    [Google Scholar]
  71. Kley, J. & Monaldi, C.R. (1998) Tectonic shortening and crustal thickness in the Central Andes: how good is the correlation ? Geology, 26, 723–726.
    [Google Scholar]
  72. Kraemer, B., Adelmann, D., Alten, M., Schnurr, W., Erpenstein, K., Kiefer, E., van den Bgaard, P. & Görler, K. (1999) Incorporation of the Paleogene foreland into Neogene Puna plateau: the Salar de Antofalla, NW Argentina. J. South Am. Earth Sci., 12, 157–182.
    [Google Scholar]
  73. Lamb, S., Hoke, L., Kennan, L. & Dewey, J. (1997) Cenozoic evolution of the Central Andes in Bolivia and northern Chile. In: Orogeny Through Time (Ed. by J.‐P.Burg & M.Ford ), Geol. Soc. Spec. Publ. , 121, 237–264.
    [Google Scholar]
  74. Laslett, G.M. & Galbraith, R.F. (1996) Statistical modelling of thermal annealing of fission tracks in apatite. Geochim. Cosmochim. Acta, 60, 5117–5131.
    [Google Scholar]
  75. Laslett, G.M., Green, P.F., Duddy, I.R. & Gleadow, A.J.W. (1987) Thermal annealing of fission tracks in apatite. A quantitative analysis. Chem. Geol. (Isot. Geosci. Sect.), 65, 1–13.
    [Google Scholar]
  76. Latorre, C., Quade, J. & McIntosh, W.C. (1997) The expansion of C‐4 grasses and global change in the late Miocene: stable isotopes evidence from the Americas. Earth Planet. Sci. Lett., 146, 83–96.
    [Google Scholar]
  77. Lork, A. & Bahlburg, H. (1993) Precise U–Pb ages of monazites from the Faja Eruptiva de la Puna Oriental and the Cordillera Oriental, NW Argentina. XII Congr. Geol. Argent. II Congr. Expl. Hidrocarburos, 12, 1–6.
    [Google Scholar]
  78. Lork, A., Miller, H. & Kramm, U. (1990) U–Pb zircon and monazite ages of the Angostura granite and the orogenic history of the northwest Argentine basement. J. South Am. Earth Sci., 2, 147–153.
    [Google Scholar]
  79. Maksaev, V. & Zentilli, M. (1999) Fission track thermochronology of the Domeyko Cordillera, northern Chile: implications for Andean tectonics and porphyry copper metallogenesis. Expl. Mining Geol., 8, 65–89.
    [Google Scholar]
  80. Mancktelow, N.S. & Grasemann, B. (1997) Time‐dependent effects of heat advection on topography and cooling histories during erosion. Tectonophysics, 270, 167–195.
    [Google Scholar]
  81. Marquillas, R.A., del Papa, C. & Sabino, I.F. (2005) Sedimentary aspects and paleoenvironmental evolution of a rift basin: salta Group (Cretaceous–Paleogene), northwestern Argentina. Int. J. Earth Sci., 94 (1), 94–113.
    [Google Scholar]
  82. Marrett, R.A. & Strecker, M.R. (2000) Response of intracontinental deformation in the central Andes to late Cenozoic reorganization of South American Plate motions. Tectonics, 19, 452–467.
    [Google Scholar]
  83. Marshall, L.G., Hoffstetter, R. & Pascual, R. (1983) Mammals and stratigraphy: geochronology of the continental mammal-bearing Tertiary of South America. Palaeovertebrata, Special Volume, 93.
    [Google Scholar]
  84. Masek, J.G., Isacks, B.L., Gubbels, T.L. & Fielding, E.J. (1994) Erosion and tectonics at the margins of continental plateaus. J. Geophys. Res., 99 (B7), 13941–13956.
    [Google Scholar]
  85. McQuarrie, N. (2002) The kinematic history of the central Andean fold‐thrust belt, Bolivia: implications for building a high plateau. Geol. Soc. Am. Bull., 114 (8), 950–963.
    [Google Scholar]
  86. Miller, D.S., Duddy, I.R., Green, P.F., Hurford, A.J. & Naeser, C.W. (1985) Results of interlaboratory comparison of fission‐track age standards. Nucl. Tracks Radiat. Meas., 10, 381–391.
    [Google Scholar]
  87. Mon, R. & Salfity, J.A. (1995) Tectonic evolution of the Andes of northern Argentina. In: Petroleum Basins of South America (Ed. by A.J.Tankard , R.S.Soruco & H.J.Welsink ), Am. Assoc. Petrol. Geol. Mem. , 62, 269–283.
    [Google Scholar]
  88. Muruaga, C.M. (2001a) Estratigrafía y desarrollo tectosedimentario de los sedimentos terciarios en los alrededores de la Sierra de Hualfín, borde suroriental de la Puna, Catamarca, Argentina. Assoc. Argent. Sedimentol., 8 (1), 27–50.
    [Google Scholar]
  89. Muruaga, C.M. (2001b) Petrografía y procedencia de areniscas terciarias en la Subcuenca de Hualfín, provincia de Catamarca, noroeste de Argentina. Assoc. Argent. Sedimentol., 8 (2), 15–35.
    [Google Scholar]
  90. Méndez, V., Navarini, A., Plaza, D. & Viera, O. (1973) Faja Eruptiva de la Puna Oriental. Congr. Geol. Argent., 89–100.
    [Google Scholar]
  91. Naeser, C.W. (1976) Fission track dating, U.S. Geological Survey, p. 65.
  92. Omarini, R.H., Sureda, R.J., Götze, H.J., Seilacher, A. & Pflüger, F. (1999) Puncoviscana folded belt in northwestern Argentina: testimony of Late Proterozoic Rodinia fragmentation and pre-Gondwana collisional episodes. Int. J. Earth Sci., 88, 76–97.
    [Google Scholar]
  93. Omarini, R.H., Viramonte, J.G., Cordani, U., Salfity, J.A. & Kawashita, K. (1984) Estudio geocronológico Rb/Sr de la Faja Eruptiva de la Puna en el sector de San Antonio de los Cobres, Provincia de Salta, Argentina. Noveno Congr. Geol. Argent., 146–158.
    [Google Scholar]
  94. Paces, J.B. & Miller, J.D. (1993) Precise U–Pb ages of Duluth complex and related mafic intrusions, northeastern Minnesota; geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagnetic processes associated with the 1.1 Ga Midcontinent Rift System. J. Geophys. Res., 98, 13997–14013.
    [Google Scholar]
  95. Ruiz, P.S. (1993) Estudio geológico en el valle de Pucara, Departamento San Carlos, Provincia de Salta. Tesis Profesional, Universidad Nacíonal de Salta.
  96. Ruiz, G.M.H., Seward, D. & Winkler, W. (2004) Detrital thermochronology – a new perspective on hinterland tectonics, an example from the Andean Amazon Basin, Ecuador. Basin Res., 16, 413–430.
    [Google Scholar]
  97. Salfity, J.A., Gorustovich, S.A., Moya, M.C. & Amengual, R. (1984) Marco tectónico de la sedimentación y efusividad Cenozoicas en la Puna Argentina. Congr. Geol. Argentino, IX, 539–554.
    [Google Scholar]
  98. Salfity, J.A. & Marquillas, R.A. (1994) Tectonic and sedimentary evolution of the Cretaceous‐Eocene Salta Group basin, Argentina. In: Cretaceous Tectonics of the Andes (Ed. by J.A.Salfity ), pp. 266–315. Fried. Vieweg & Sohn, Germany.
    [Google Scholar]
  99. Sañudo‐Wilhelmy, S.A. & Flegal, A.R. (1994) Temporal variations in lead concentrations and isotopic composition in the Southern California Bight. Geochim. Cosmochim. Acta, 58, 3315–3320.
    [Google Scholar]
  100. Schmitt, A.K., Grove, M., Harrison, T.M., Lovera, O., Hulen, J.B. & Walters, M. (2002) The Geysers–Cobb Mountain System, California. (Part 1): U–Pb zircon ages of volcanic rocks, conditions of zircon crystallization and magma residence times. Geochim. Cosmochim. Acta, 67, 3423–3442.
    [Google Scholar]
  101. Sobel, E.R., Hilley, G.E. & Strecker, M.R. (2003) Formation of internally drained contractional basins by aridity‐limited bedrock incision. J. Geophys. Res., 108 (B7), 2344. doi:10.1029/2002JB001883.
    [Google Scholar]
  102. Sobel, E.R. & Strecker, M.R. (2003) Uplift, exhumation and precipitation: tectonic and climatic control of Late Cenozoic landscape evolution in the northern Sierras Pampeanas, Argentina. Basin Res., 15, 431–451.
    [Google Scholar]
  103. Springer, M. & Förster, A. (1998) Heat‐flow density across the Central Andean subduction zone. Tectonophysics, 291, 123–139.
    [Google Scholar]
  104. Starck, D. & Anzótegui, L.M. (2001) The late miocene climatic change – persistence of a climatic signal through the orogenic stratigraphic record in northwestern Argentina. J. S. Am. Earth Sci., 14, 763–774.
    [Google Scholar]
  105. Starck, D. & Vergani, G. (1996) Desarrollo Tecto‐sedimentario del Cenozoico en el Sur de la provincia de Salta‐Argentina. 13 Congr. Geol. Argent. Tercero Congr. Expl. Hidrocarburos, 13, 433–452.
    [Google Scholar]
  106. Strecker, M.R., Cerveny, P., Bloom, A.L. & Malizzia, D. (1989) Late tectonism and landscape development in the foreland of the Andes: Northern Sierras Pampeanas (26–28°S), Argentina. Tectonics, 8 (3), 517–534.
    [Google Scholar]
  107. Stüwe, K., White, L. & Brown, R. (1994) The influence of eroding topography on steady‐state isotherms: application to fission track analysis. Earth Planet. Sci. Lett., 124, 63–74.
    [Google Scholar]
  108. Toselli, A. (1990) Metamorfismo del Ciclo Pampeano. In: El Ciclo Pampeano en el Noroeste Argentino (Ed. by F.G.Aceñolaza , H.Miller & A.J.Toselli ), Univ. Nac. Tucumán , 4, 181–197.
    [Google Scholar]
  109. Turner, J.C.M. (1960) Estratigrafía del Nevado de Cachi y sector al oeste. Acta Geol. Lilloana Tucumán, 3, 191–226.
    [Google Scholar]
  110. Valloni, R. (1985) Reading provenance from modern marine sands. In: Provenance of Arenites (Ed. by G.G.Zuffa ), NATO‐ASI Ser. , 148, 309–332.
    [Google Scholar]
  111. Vandervoort, D.S., Jordan, T.E., Zeitler, P.K. & Alonso, R.N. (1995) Chronology of internal drainage development and uplift, southern Puna plateau, Argentine central Andes. Geology, 23 (2), 145–148.
    [Google Scholar]
  112. Vergani, G. & Starck, D. (1989) Geología del Sur de la Provincia de Salta – Parte II: Estratigrafía y evolución tectosedimentaria del Cenozoico entre el Valle Calchaquí y Metán, Unpublished. Y.P.F.
  113. Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., Von Quadt, A., Roddick, J.C. & Spiegel, W. (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostand. Newslett., 91, 1–23.
    [Google Scholar]
  114. Willett, S.D., Issler, D., Beaumont, C., Donelick, R.A. & Grist, A. (1997) Inverse modeling of annealing of fission tracks in apatite 2; application to the thermal history of the Western Canada Sedimentary Basin. Am. J. Sci., 297, 970–1011.
    [Google Scholar]
  115. World Meteorological Organization (WMO)
    World Meteorological Organization (WMO) (1975) Climatic atlas of South America: World Meteorological Organization, Geneva, scale 1:1,000,000, 28pp.
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2006.00283.x
Loading
/content/journals/10.1111/j.1365-2117.2006.00283.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error