1887
Volume 17, Issue 2
  • E-ISSN: 1365-2117

Abstract

Abstract

An inferred burial and exhumation history of Pennsylvanian strata in the central Appalachian foreland basin is constrained by integrating palaeothermometers, geochronometers and estimated palaeogeothermal gradients. Vitrinite reflectance data and fluid inclusion homogenization temperatures indicate that burial of Lower and Upper Pennsylvanian strata of the Appalachian Plateau in West Virginia exceeded ∼4.4 km during the late Permian and occurred at a rate of ∼100 m Myr−1. Exhumation rates of ∼10 m Myr−1 from the late Permian to the early Cretaceous are constrained using maximum burial conditions and published apatite fission track (AFT) ages. AFT and radiogenic helium ages indicate exhumation rates of ∼30–50 m Myr−1 from the early to late Cretaceous. Radiogenic helium dates and present day sampling depths indicate that exhumation rates from the late Cretaceous to present were ∼25 m Myr−1. Exhumation rates for Upper and Lower Pennsylvanian strata within the Appalachian Plateau are remarkably similar. Early slow exhumation was possibly driven primarily by isostatic rebound associated with Triassic rifting. The later, more rapid exhumation can be attributed to thermal expansion followed by lithospheric flexure related to sediment loading along the passive margin.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2005.00265.x
2005-04-25
2024-03-29
Loading full text...

Full text loading...

References

  1. Allen, P.A., Crampton, S.L. & Sinclair, H.D. (1991) The inception and early evolution of the North Alpine foreland basin, Switzerland. Basin Res., 3, 143–163.
    [Google Scholar]
  2. Allen, P.A., Homewood, P. & Williams, G.D. (1986) Foreland basins: an introduction. In: Foreland Basins (Ed. by P.A.Allen & P.Homewood ), Spec. Publ. Int. Assoc. Sediment. , 8, 3–12.
    [Google Scholar]
  3. Arne, D. & Zentilli, M. (1994) Apatite fission track thermochronology integrated with vitrinite reflectance. In: Vitrinite Reflectance as a Maturity Parameter: Applications and Limitations (Ed. by P.K.Mukhopadhyay & W.G.Dow ), Am. Chem. Soc. Symp. Ser. , 570, 249–268.
    [Google Scholar]
  4. Bachu, S., Ramon, J.C., Villegas, M.E. & Underschultz, J.R. (1995) Geothermal regime and thermal history of the Llanos Basin, Columbia. Bull. Am. Assoc. Petrol. Geol., 79, 116–129.
    [Google Scholar]
  5. Barker, C.E. & Goldstein, R.H. (1990) Fluid‐inclusion technique for determining maximum temperature in calcite and its comparison to the vitrinite reflectance geothermometers. Geology, 18, 1003–1006.
    [Google Scholar]
  6. Barr, D. (1987) Lithospheric stretching, detached normal faulting and footwall uplift. In: Continental Extensional Tectonics (Ed. by M.P.Coward , J.F.Dewey & P.L.Hancock ), Spec. Publ.Geol. Soc. , 28, 75–94.
    [Google Scholar]
  7. Beaumont, C., Quinlan, G.M. & Hamilton, J. (1987) The Alleghanian orogeny and its relationship to the evolution of the eastern interior, North America. In: Sedimentary Basins and Basin‐forming Mechanisms (Ed. by C.Beaumont & A.J.Tankard ), Mem. Can. Soc. Petrol.Geol., 12, 425–445.
    [Google Scholar]
  8. Belt, E.S. & Lyons, P.C. (1989) A thrust‐ridge paleodepositional model for the Upper Freeport coal bed and associated clastic facies, Upper Potomac coal field, Appalachian basin, U.S.A. Int. J. Coal Geol., 12, 293–328.
    [Google Scholar]
  9. Blackmer, G.C., Omar, G.I. & Gold, D.P. (1994) Post‐Alleghanian unroofing history of the Appalachian Basin, Pennsylvania, from apatite fission track analysis and thermal models. Tectonics, 13, 1259–1276.
    [Google Scholar]
  10. Blackwell, D.D., Steele, J.L. & Carter, L.S. (1989) Heat flow database for the United States. In: Geophysics of North America, CD‐ROM (Ed. by O.J.Kinsfather & H.Meyers ) National Oceanographic and Atmospheric Administration, National Geophysical Data Center.
    [Google Scholar]
  11. Blake, B.M. (1997) Revised lithostratigraphy and megafloral biostratigraphy of the New River and Kanawha formations (Pottsville Group: Lower and Middle Pennsylvanian) in southern West Virginia. MS Thesis, West Virginia University, Morgantown, WV.
  12. Boettcher, S.S. & Milliken, K.L. (1994) Mesozoic–Cenozoic unroofing of the southern Appalachian basin: apatite fission track evidence from Middle Pennsylvanian sandstones. J. Geol., 102, 655–663.
    [Google Scholar]
  13. Burruss, R.C. (1989) Paleotemperatures from fluid inclusions: advances in theory and technique. In: Thermal History of Sedimentary Basins: Methods and Case Histories (Ed. by N.D.Naeser & T.H.McCulloh ), pp. 119–131. Springer‐Verlag, New York, NY.
    [Google Scholar]
  14. Castle, J.W. (2001) Appalachian basin stratigraphic response to convergent‐margin structural evolution. Basin Res., 13, 397–418.
    [Google Scholar]
  15. Chesnut, D.R. (1994) Eustatic and tectonic control of deposition of the lower and middle Pennsylvanian strata of the central Appalachian basin. In: Tectonic and Eustatic Controls on Sedimentary Cycles (Ed. by J.M.Dennison & F.R.Ettensohn ), SEPM Concepts Sedimentol. Paleontol. , 4, 51–64.
    [Google Scholar]
  16. Chyi, L.L., Barnett, R.G., Burford, A.E., Quick, T.J. & Gray, R.J. (1987) Coalification patterns of the Pittsburgh coal: their origin and bearing on hydrocarbon maturation. Int. J. Coal Geol., 7, 69–83.
    [Google Scholar]
  17. Crowhurst, P.V., Green, P.F. & Kamp, P.J.J. (2002) Appraisal of (U–Th)/He apatite thermochronology as a thermal history tool for hydrocarbon exploration: an example from the Taranaki basin, New Zealand. Bull. Am. Assoc. Petrol. Geol., 86, 1801–1819.
    [Google Scholar]
  18. Davis, M.W. & Ehrlich, R. (1974) Late Paleozoic crustal composition and dynamics in the southeastern United States. In: Carboniferous of the Southeastern United States (Ed. by G.Briggs ), Geol. Soc. Am., Spec. Pap., 148, 171–185.
    [Google Scholar]
  19. De Boer, J.Z., McHone, J.G., Puffer, J.H., Ragland, P.C. & Whittington, D. (1988) Mesozoic and Cenozoic magmatism. In: The Geology of North America, Vol. I‐2, The Atlantic Continental Margin, U.S. (Ed. by R.E.Sheridan & J.A.Grow ), Geol. Soc. Am. , 217–241.
    [Google Scholar]
  20. Dickinson, W.R. (1974) Plate tectonics and sedimentation. In: Tectonics and Sedimentation (Ed. by W.R.Dickinson ), Spec. Publ. Soc. Econ. Paleontol. Mineral. , 22, 1–27.
    [Google Scholar]
  21. Dickinson, W.R, Beard, L.S., Brakenridge, G.R., Erjavec, J.L., Ferguson, R.C., Inman, K.F., Knepp, R.A., Lindberg, F.A. & Ryberg, P.T. (1983) Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geol. Soc. Am. Bull., 94, 222–235.
    [Google Scholar]
  22. Donaldson, A.C., Renton, J.J. & Presley, M.W. (1985) Pennsylvanian deposystems and paleoclimates of the Appalachians. Int. J. Coal Geol., 5, 167–193.
    [Google Scholar]
  23. Ehlers, T.A. & Farley, K.A. (2003) Apatite (U–Th)/He thermochronometry: methods and applications to problems in tectonic and surface processes. Earth Planet. Sci. Lett., 206, 1–14.
    [Google Scholar]
  24. Epstein, A.G., Epstein, J.B. & Harris, L. (1977) Conodont color alteration – an index to organic metamorphism. Prof. Pap. U.S. Geol. Surv., 995.
    [Google Scholar]
  25. Eriksson, K.A., Campbell, I.H., Palin, J.M., Allen, C.M. & Bock, B. (2004) Evidence for Multiple Recycling in Neoproterozoic through Pennsylvanian Sedimentary Rocks of the Central Appalachian Basin. J. Geol., 112, 261–276.
    [Google Scholar]
  26. Farley, K.A. (2000) Helium diffusion from apatite: general behavior as illustrated by Durango fluorapatite. J. Geophys. Res., 105B2, 2903–2914.
    [Google Scholar]
  27. Farley, K.A., Wolf, R.A. & Silver, L.T. (1996) The effects of long alpha‐stopping distances on (U–Th)/He ages. Geochim. Cosmochim. Acta, 60, 4223–4229.
    [Google Scholar]
  28. Feinstein, S., Kohn, B.P. & Eyal, M. (1989) Significance of combined vitrinite reflectance and fission‐track studies in evaluating thermal history of sedimentary basins: an example from southern Israel. In: Thermal History of Sedimentary Basins: Methods and Case Histories (Ed. by N.D.Naeser & T.H.McCulloh ), pp. 197–216. Springer‐Verlag, New York, NY.
    [Google Scholar]
  29. Gillespie, W.H. & Pfefferkorn, H.W. (1979) Distribution of commonly occurring plant megafossils in the proposed Pennsylvanian system stratotype. In: Proposed Pennsylvanian System Stratotype, Virginia and West Virginia. AGI Selected Guidebook Series (Ed. by K.J.Englund , H.H.Arndt & T.W.Henry ). 1, pp. 87–96. American Geological Institute, USA.
    [Google Scholar]
  30. Goldstein, R.H. & Reynolds, T.J. (1994) Systematics of fluid inclusions in diagenetic minerals. Soc. Econ. Paleontol. Mineral. Short Course, 31, 199 pp.
    [Google Scholar]
  31. House, M.A., Kohn, B.P., Farley, K.A. & Raza, A. (2002) Evaluating thermal history models for the Otway basin, southeastern Australia, using (U–Th)/He and fission‐track data from borehole apatites. Tectonophysics, 349, 277–295.
    [Google Scholar]
  32. House, M.A., Wernicke, B.P. & Farley, K.A. (1998) Dating topography of the Sierra Nevada, California, using apatite (U–Th)/He ages. Nature, 396, 66–69.
    [Google Scholar]
  33. Houseknecht, D.W. (1980) Comparative anatomy of a Pottsville lithic arenite and quartz arenite of the Pocahontas basin, southern West Virginia: petrogenetic, depositional, and stratigraphic implications. J. Sed. Pet., 50, 3–20.
    [Google Scholar]
  34. Hower, J.C. (1978) Anisotropy of vitrinite reflectance in relation to coal metamorphism for selected united states coals. PhD. Thesis, Pennsylvania State University, University Park, PA.
  35. Hower, J.C. & Rimmer, S.M. (1991) Coal rank trends in the Central Appalachian coalfield: Virginia, West Virginia, and Kentucky. Org. Geochem., 17, 161–173.
    [Google Scholar]
  36. Hulver, M.L. (1997) Post‐orogenic evolution of the Appalachian mountain system and its foreland. PhD Thesis, University of Chicago, Chicago, IL.
  37. Kamp, P.J.J., Webster, K.S. & Nathan, S. (1996) Thermal history analysis by integrated modeling of apatite fission track and vitrinite reflectance data: application to an inverted basin (Buller Coalfield, New Zealand). Basin Res., 8, 383–402.
    [Google Scholar]
  38. Kirby, E., Reiners, P.W., Krol, M.A., Whipple, K.X., Hodges, K.V., Farley, K.A., Tang, W. & Chen, Z. (2002) Late Cenozoic evolution of the eastern margin of the Tibetan Plateau: inferences from 40Ar/39Ar and (U–Th)/He thermochronology. Tectonics, 21, 1–20.
    [Google Scholar]
  39. Klein, G. (1991) Geodynamics and geochemical aspects of sedimentary basin classification. J. Afr. Earth Sci., 13, 1–11.
    [Google Scholar]
  40. Korus, J.T. (2002) The lower Pennsylvanian new river formation: a nonmarine record of glacioeustacy in a foreland basin. MS Thesis, Virginia Tech, Blacksburg, VA.
  41. Law, B.E., Shah, S.H.A. & Malik, M.A. (1998) Abnormally high formation pressures, Potwar Plateau, Pakistan. In: Abnormal Pressures in Hydrocarbon Environments (Ed. by B.E.Law , G.F.Ulmishek & V.I.Slavin ), Mem. Am. Assoc. Petrol. Geol. , 70, 247–258.
    [Google Scholar]
  42. Levine, J.R. & Davis, A. (1989) The relationship of coal optical fabrics to Alleghanian tectonic deformation in the central Appalachian fold‐and‐thrust belt, Pennsylvania. Bull. Geol. Soc. Am., 101, 1333–1347.
    [Google Scholar]
  43. Martino, R.L. & Belt, E.S. (2001) Facies architecture and allocycles in the Glenshaw Formation (Upper Pennsylvanian), upper Potomac basin, Maryland/West Virginia [abstract]. Geol. Soc. Am. Abstracts Programs, 33, 78.
    [Google Scholar]
  44. McDowell, R.J. (1986) An interpretation of the Grafton sandstone and its implications for Pennsylvanian paleohydraulics, climate, provenance, and tectonics. Compass Sigma Gamma Epsilon, 632, 48–57.
    [Google Scholar]
  45. Miller, D.J. & Eriksson, K.A. (2000) Sequence stratigraphy of Upper Mississippian strata in the central Appalachians: a record of glacioeustacy and tectonoeustacy in a foreland basin setting. Bull. Am. Assoc. Petrol. Geol., 84, 210–233.
    [Google Scholar]
  46. Miller, J.D. & Kent, D.V. (1988) Regional trends in the timing of Alleghanian remagnetization in the Appalachians. Geology, 16, 588–591.
    [Google Scholar]
  47. Nadon, G.C. (1998) Magnitude and timing of peat‐to‐coal compaction. Geology, 26, 727–730.
    [Google Scholar]
  48. Nadon, G.C. & Issler, D.A. (1997) The timing and magnitude of floodplain compaction. Geosci. Can., 24, 37–43.
    [Google Scholar]
  49. Naeser, N.D., Naeser, C.W. & McCulloh, T.H. (1989) The application of fission‐track dating to the depositional and thermal history of rocks in sedimentary basins. In: Thermal History of Sedimentary Basins: Methods and Case Histories (Ed. by N.D.Naeser & T.H.McCulloh ), pp. 157–180. Springer‐Verlag, New York, NY.
    [Google Scholar]
  50. O'Sullivan, P.B. (1999) Thermochronology, denudation and variations in palaeosurface temperature: a case study from the North Slope foreland basin, Alaska. Basin Res., 11, 191–204.
    [Google Scholar]
  51. Opdyke, N.D., Roberts, J., Claoué‐Long, J., Irving, E. & Jones, P.J. (2000) Base of Kiaman: its definition and global stratigraphic significance. Bull. Geol. Soc. Am., 112, 1315–1341.
    [Google Scholar]
  52. Pazzaglia, F.J. & Brandon, M.T. (1996) Macrogeomorphic evolution of the post‐Triassic Appalachian mountains determined by the deconvolution of the offshore basin sedimentary record. Basin Res., 8, 255–278.
    [Google Scholar]
  53. Pazzaglia, F.J. & Gardner, T.W. (1994) Late Cenozoic flexural deformation of the middle U.S. Atlantic passive margin. J. Geophys. Res., 99B6, 12,143–12,157.
    [Google Scholar]
  54. Pennsylvania State University Coal Database
    Pennsylvania State University Coal Database (http://www.ems.psu.edu/COPL/coal.html).
  55. Poag, C.W. & Sevon, W.D. (1989) A record of Appalachian denudation in postrift Mesozoic and Cenozoic sedimentary deposits of the U.S. middle Atlantic continental margin. Geomorphology, 2, 119–157.
    [Google Scholar]
  56. Quinlan, G.M. & Beaumont, C. (1984) Appalachian thrusting, lithospheric flexure, and Paleozoic stratigraphy of the Eastern Interior of North America. Can. J. Earth Sci., 21, 973–996.
    [Google Scholar]
  57. Rasbury, E.T., Hanson, G.N., Meyers, W.J., Holt, W.E., Goldstein, R.H. & Saller, A.H. (1998) U–Pb dates of paleosols: constraints on late Paleozoic cycle durations and boundary ages. Geology, 26, 403–406.
    [Google Scholar]
  58. Reiners, P.W., Brady, R., Farley, K.A., Fryxell, J.E., Wernicke, B.P. & Lux, D. (2000) Helium and argon thermochronometry of the Gold Butte block, South Virgin Mountains, Nevada. Earth Planet. Sci. Lett., 178, 315–326.
    [Google Scholar]
  59. Robinson, R.A.J. & Prave, A.R. (1995) Cratonal contributions to a ‘classic’ molasses: the Carboniferous Pottsville formation of eastern Pennsylvania revisited. Geology, 23, 369–372.
    [Google Scholar]
  60. Roden, M.K. (1990) Apatite fission‐track thermochronology of the southern Appalachian basin: Maryland, West Virginia, and Virginia. J. Geol., 99, 41–53.
    [Google Scholar]
  61. Roden, M.K., Cerveny, P.F. & Bergman, S.C. (1992) Apatite fission track thermochronology of the Appalachian foreland basin from the Virginia piedmont to eastern Ohio. Geol. Soc. Am. Abstracts Programs, 24, 237.
    [Google Scholar]
  62. Roden, M.K. & Miller, D.S. (1989) Apatite fission‐track thermochronology of the Pennsylvania Appalachian basin. Geomorphology, 2, 39–51.
    [Google Scholar]
  63. Sinclair, H.D. (1997) Tectonostratigraphic model for underfilled peripheral basins: an alpine perspective. Bull. Geol. Soc. Am., 109, 324–346.
    [Google Scholar]
  64. Slingerland, R. & Furlong, K.P. (1989) Geodynamic and geomorphic evolution of the Permo‐Triassic Appalachian Mountains. Geomorphology, 2, 23–37.
    [Google Scholar]
  65. Spotila, J.A., Bank, G.C., Reiners, P.W., Naeser, C.W., Naeser, N.D & Henika, W.S. (2004) Origin of the Blue Ridge escarpment along the passive margin of North America. Basin Res., 16, 41–63.
    [Google Scholar]
  66. Spotila, J.A., Farley, K. & Sieh, K.E. (1998) Uplift and erosion of the San Bernardino Mountains associated with transpression along the San Andreas fault, California, as constrained by radiogenic helium thermochronometry. Tectonics, 17, 360–378.
    [Google Scholar]
  67. Stockli, D.F., Dumitru, T.A., McWilliams, M.O. & Farley, K.A. (2003) Cenozoic tectonic evolution of the White Mountains, California and Nevada. Bull. Geol. Soc. Am., 115, 788–816.
    [Google Scholar]
  68. Suzuki, N., Matsubayashi, H. & Waples, D.W. (1993) A simpler kinetic model of vitrinite reflectance. Bull. Am. Assoc. Petrol. Geol., 77, 1502–1508.
    [Google Scholar]
  69. Tankard, A. (1986) Depositional response to foreland deformation in the Carboniferous of eastern Kentucky. Bull. Am. Assoc. Petrol. Geol., 70, 853–868.
    [Google Scholar]
  70. Tobin, R.C. & Claxton, B.L. (2000) Multidisciplinary thermal maturity studies using vitrinite reflectance and fluid inclusion microthermometry: a new calibration of old techniques. Bull. Am. Assoc. Petrol. Geol., 84, 1647–1665.
    [Google Scholar]
  71. Vitorello, I. & Pollack, H.N. (1980) On the variation of continental heat flow with age and thermal evolution of continents. J. Geophys. Res., 85B2, 983–995.
    [Google Scholar]
  72. Walderhaug, O. (1994) Temperatures of quartz cementation in Jurassic sandstones from the Norwegian continental shelf–evidence from fluid inclusions. J. Sediment. Res., A64, 311–323.
    [Google Scholar]
  73. Wojcik, K.M., Goldstein, R.H. & Walton, A.W. (1994) History of diagenetic fluids in a distant foreland area, Middle and Upper Pennsylvanian Cherokee basin, Kansas, USA: fluid inclusion evidence. Geochim. Cosmochim. Acta, 58, 1175–1191.
    [Google Scholar]
  74. Wolf, R.A., Farley, K.A. & Silver, L.T. (1996) Helium diffusion and low‐temperature thermochronometry of apatite. Geochim. Cosmochim. Acta, 60, 4231–4240.
    [Google Scholar]
  75. Zhang, E. & Davis, A. (1993) Coalification patterns of the Pennsylvanian coal measures in the Appalachian foreland basin, western and south‐central Pennsylvania. Bull. Geol. Soc. Am., 105, 162–174.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2005.00265.x
Loading
/content/journals/10.1111/j.1365-2117.2005.00265.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error