1887
Volume 16, Issue 3
  • E-ISSN: 1365-2117

Abstract

Abstract

Two separate and distinct diamictite‐rich units occur in the mixed carbonate‐siliciclastic Polarisbreen Group, which comprises the top kilometer of >7 km of Neoproterozoic strata in the northeast of the Svalbard archipelago. The platformal succession accumulated on the windward, tropical to subtropical margin of Laurentia. The older Petrovbreen Member is a thin glacimarine diamictite that lacks a cap carbonate. It contains locally derived clasts and overlies a regional karstic disconformity that was directly preceded by a large (>10‰) negative 13C anomaly in the underlying shallow‐marine carbonates. This anomaly is homologous to anomalies in Australia, Canada and Namibia that precede the Marinoan glaciation. The younger and thicker Wilsonbreen Formation comprises terrestrial ice‐contact deposits. It contains abundant extrabasinal clasts and is draped by a transgressive cap dolostone 3–18 m thick. The cap dolostone is replete with sedimentary features strongly associated with post‐Marinoan caps globally, and its isotopic profile is virtually identical to that of other Marinoan cap dolostones. From the inter‐regional perspective, the two diamictite‐rich units in the Polarisbreen Group should represent the first and final phases of the Marinoan glaciation. Above the Petrovbreen diamictite are ∼200 m of finely laminated, dark olive‐coloured rhythmites (MacDonaldryggen Member) interpreted here to represent suspension deposits beneath shorefast, multi‐annual sea ice (sikussak). Above the suspension deposits and below the Wilsonbreen diamictites is a <30‐m‐thick regressive sequence (Slangen Member) composed of dolomite grainstone and evaporitic supratidal microbialaminite. We interpret this sabkha‐like lagoonal sequence as an oasis deposit that precipitated when local marine ice melted away under greenhouse forcing, but while the tropical ocean remained covered due to inflow of sea glaciers from higher latitudes. It appears that the Polarisbreen Group presents an unusually complete record of the Marinoan snowball glaciation.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2004.00234.x
2004-06-23
2024-04-20
Loading full text...

Full text loading...

References

  1. Aitken, J.D. (1991) The Ice Brook Formation and Post‐Rapitan, Late Proterozoic glaciation, Mackenzie Mountains, Northwest Territories. Geol. Surv. Canada Bull., 404, 43pp.
    [Google Scholar]
  2. Allan, J.R. & Matthews, R.K. (1982) Isotope signatures associated with early meteoric diagenesis. Sedimentology, 29, 797–817.
    [Google Scholar]
  3. Alley, R.B., Blankenshio, D.D., Rooney, S.T. & Bentley, C.R. (1989) Sedimentation beneath ice shelves – the view from Ice Stream B. Marine Geology, 85, 101–120.
    [Google Scholar]
  4. Anderson, J.B. (1999) Antarctic Marine Geology. Cambridge University Press, Cambridge, UK, 289pp.
    [Google Scholar]
  5. Asmeron, Y., Jacobsen, S.B., Knoll, A.H., Butterfield, N.J. & Swett, K. (1991) Strontium isotopic variations of Neoproterozoic seawater: implications for crustal evolution. Geochim. Cosmochim. Acta, 55, 2883–2894.
    [Google Scholar]
  6. Atkins, C.B., Barrett, P.J. & Hicock, S.R. (2002) Cold glaciers erode and deposit: evidence from Allan Hills, Antarctica. Geology, 30 (7), 659–662.
    [Google Scholar]
  7. Banner, J.L. & Hanson, G.N. (1990) Calculation of simultaneous isotopic and trace element variations during water‐rock interaction with applications to carbonate diagenesis. Geochim. Cosmochim. Acta, 54, 3123–3137.
    [Google Scholar]
  8. Boggs, S.Jr. (1972) Petrography and geochemistry of rhombic, calcite pseudomorphs from mid‐Tertiary mudstones of the Pacific Northwest, U.S.A. Sedimentology, 19, 219–235.
    [Google Scholar]
  9. Bowring, S., Myrow, P., Landing, E., Ramezani, J. & Grotzinger, J. (2003) Geochronological constraints on terminal Proterozoic events and the rise of Metazoans. Geophys. Res. Abstr. (EGS, Nice)5, 13219.
  10. Brand, U. & Veizer, J. (1980) Chemical diagenesis of a multicomponent carbonate system ‐1: trace elements. J. Sediment. Petrol., 50, 1219–1236.
    [Google Scholar]
  11. Brand, U. & Veizer, J. (1981) Chemical diagenesis of a multicomponent carbonate system ‐2: stable isotopes. J. Sediment. Petrol., 51, 987–997.
    [Google Scholar]
  12. Brasier, M.D. & Shields, G. (2000) Neoproterozoic chemostratigraphy and correlation of the Port Askaig glaciation, Dalradian Supergroup of Scotland. J. Geol. Soc. London, 157, 909–914.
    [Google Scholar]
  13. Buchan, K.L., Mertanen, S., Park, R.G., Pesonen, L.J., Elming, S.‐Å., Abrahamsen, N. & Bylund, G. (2000) Comparing the drift of Laurentia and Baltica in the Proterozoic: the importance of key palaeomagnetic poles. Tectonophysics, 319, 167–198.
    [Google Scholar]
  14. Buchart, B., Seaman, P., Stockmann, G., Vous, M., Wilken, U., Duwel, L., Kriastiansen, A., Jenner, C., Whiticar, M.J., Kristensen, R.M., Petersen, G.H. & Thorbjorn, L. (1997) Submarine columns of ikaite tufa. Nature, 390, 129–130.
    [Google Scholar]
  15. Budyko, M.I. (1969) The effect of solar radiation variations on the climate of the Earth. Tellus, 21, 611–619.
    [Google Scholar]
  16. Butterfield, N.J., Knoll, A.H. & Swett, K. (1994) Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen. Fossils Strata, 34, 1–84.
    [Google Scholar]
  17. Caldeira, K. & Kasting, J.F. (1992) Susceptibility of the early Earth to irreversible glaciation caused by carbon dioxide clouds. Nature, 359, 226–228.
    [Google Scholar]
  18. Calver, C.R. (2000) Isotope stratigraphy of the Ediacarian (Neoproterozoic III) of the Adelaide Rift Complex, Australia, and the overprint of water column stratification. Precambrian Res., 100, 121–150.
    [Google Scholar]
  19. Carey, S.W. & Ahmad, N. (1961) Glacial marine sedimentation. In: Geology of the Arctic (Ed. by G.O.Raasch ), pp. 865–894. University of Toronto Press, Toronto.
    [Google Scholar]
  20. Chafetz, H.S., Imerito‐Teizlaff, A.A. & Zhang, J. (1999) Stable‐isotope and elemental trends in Pleistocene sabkha dolomites: descending meteoric water vs. sulfate reduction. J. Sediment. Res., 69, 256–266.
    [Google Scholar]
  21. Chumakov, N.M. (1968) On the character of the Late Precambrian glaciation of Spitsbergen (translated title). Dokl. Akad Nauk SSSR, Ser. Geol., 180, 1446–1449.
    [Google Scholar]
  22. Chumakov, N.M. (1978) Precambrian tillites and tilloids (translated title). 72–87. Nauka, Moscow (in Russian).
    [Google Scholar]
  23. Condon, D.J., Prave, A.R. & Benn, D.I. (2002) Neoproterozoic glacial‐rain out intervals: observations and implications. Geology, 30, 35–38.
    [Google Scholar]
  24. Cotter, K.L. (1999) Microfossils from Neoproterozoic Supersequence 1 of the Officer Basin, Western Australia. Alcheringa, 23, 63–86.
    [Google Scholar]
  25. Council, T.C. & Bennett, P.C. (1993) Geochemistry of ikaite formation at Mono Lake, California: implications for the origin of tufa mounds. Geology, 21, 971–974.
    [Google Scholar]
  26. Cuffey, K.M., Conway, H., Gades, A.M., Hallet, B., Lorrain, R., Severinghaus, J.P., Steig, E.J, Vaughn, B. & White, J.W.C. (2000) Entrainment at cold glacier beds. Geology, 28 (4), 351–354.
    [Google Scholar]
  27. De Angelis, H. & Skvarca, P. (2003) Glacier surge after ice shelf collapse. Science, 299, 1560–1562.
    [Google Scholar]
  28. De Lurio, J.L. & Frakes, L.A. (1999) Glendonites as a paleoenvironmental tool: implications for early Cretaceous high latitude climates in Australia. Geochim. Cosmochim. Acta, 63, 1039–1048.
    [Google Scholar]
  29. Derry, L.A., Kaufman, A.J. & Jacobsen, S.B. (1992) Sedimentary cycling and environmental change in the Late Proterozoic: evidence from stable and radiogenic isotopes. Geochim. Cosmochim. Acta, 56, 1317–1329.
    [Google Scholar]
  30. Des Marais, D.J. & Moore, J.G. (1984) Carbon and its isotopes in mid‐oceanic basaltic glasses. Earth Planet. Sci. Lett., 69, 43–57.
    [Google Scholar]
  31. Dewey, J.F. & Strachan, R.A. (2003) Changing Silurian–Devonian relative plate motion in the Caledonides: sinistral transpression to sinistral transtension. J. Geol. Soc. London, 160, 219–229.
    [Google Scholar]
  32. Donnadieu, Y., Fluteau, F., Ramstein, G., Ritz, C. & Besse, J. (2003) Is there a conflict between Neoproterozoic glacial deposits and the snowball Earth interpretation: an improved understanding with numerical modeling. Earth Planet. Sci. Let., 208, 101–112.
    [Google Scholar]
  33. Dowdeswell, J.A., Elverhøi, A. & Spielhagen, R. (1998) Glacimarine sedimentary processes and facies on the polar North Atlantic Margins, Quat . Sci. Rev., 17, 243–272.
    [Google Scholar]
  34. Dowdeswell, J.A., Whittington, J.A., Jennings, A.E., Andrews, J.T., Mackensen, A. & Marienfield, P. (2000) An origin for laminated glacimarine sediments through sea‐ice build‐up and suppressed iceberg rafting. Sedimentology, 47, 557–576.
    [Google Scholar]
  35. Dowdeswell, J.A., Hambrey, M.J. & Wu, R. (1985) A Comparison of clast fabric and shape in Late Precambrian and Modern glacigenic sediments. J. Sediment. Petrol., 55 (5), 691–704.
    [Google Scholar]
  36. Drewry, D.J. & Cooper, A.P.R. (1981) Processes and models of Antarctic glacimarine sedimentation. Ann. Glaciol., 2, 117–122.
    [Google Scholar]
  37. Elverhøi, A., Pfirman, S.L., Solheim, A. & Larssen, B.B. (1989) Glacimarine sedimentation in epicontinental seas exemplified by the Northern Barents Sea. Mar. Geol., 85, 225–250.
    [Google Scholar]
  38. Embleton, B.J.J. & Williams, G.E. (1986) Low palaeolatitude of deposition for late Precambrian periglacial varvites in South Australia: implications for palaeoclimatology. Earth Planet. Sci. Lett., 79, 419–430.
    [Google Scholar]
  39. Evans, D.A.D. (2000) Stratigraphic, geochronological, and paleomagnetic constraints upon the Neoproterozoic climatic paradoxes. Am. J. Sci., 300, 347–443.
    [Google Scholar]
  40. Fairchild, I.J. (1993) Balmy shores and icy wastes: the paradox of carbonates associated with glacial deposits in Neoproterozoic times. In: Sedimentology Review 1 (Ed. by V.P.Wright ), pp. 1–16. Blackwell Scientific Publications, Oxford, UK.
    [Google Scholar]
  41. Fairchild, I.J. & Hambrey, M.J. (1984) The Vendian succession of northeastern Spitsbergen: petrogenesis of a dolomite-tillite association. Precambrian Res., 26, 111–167.
    [Google Scholar]
  42. Fairchild, I.J. & Hambrey, M.J. (1995) Vendian basin evolution in East Greenland and NE Svalbard. Precambrian Res., 73, 217–233.
    [Google Scholar]
  43. Fairchild, I.J., Hambrey, M.J., Spiro, B. & Jefferson, T.H. (1989) Late Proterozoic glacial carbonates in northeast Spitsbergen: new insights into the carbonate-tillite association. Geol. Mag., 126, 469–490.
    [Google Scholar]
  44. Fairchild, I.J. & Spiro, B. (1987) Petrological and isotopic implications of some contrasting Late Precambrian carbonates, NE Spitsbergen. Sedimentology, 34, 973–989.
    [Google Scholar]
  45. Fairchild, I.J. & Spiro, B. (1990) Carbonate minerals in glacial sediments: geochemical clues to palaeoenvironment. In: Glacimarine Environments: Processes and Sediments (Ed. by J.A.Dowdeswell & J.D.Scourse ), Geol. Soc. Spec. Publ. , 53, 201–216.
    [Google Scholar]
  46. Fairchild, I.J., Spiro, B., Herrington, P.M. & Song, T. (2000) Controls on Sr and C isotope compositions of Neoproterozoic Sr‐rich limestones of East Greenland and North China. In: Carbonate Sedimentation in the Evolving Precambrian World (Ed. by J.P.Grotzinger & N.P.James ), SEPM Spec. Publ. , 67, 297–313.
    [Google Scholar]
  47. Frederiksen, K.S., Craig, L.E. & Skipper, C.B. (1999) New observations of the stratigraphy and sedimentology of the Upper Proterozoic Andrée Land Group, East Greenland: supporting evidence for a drowned carbonate ramp. In: Geology of East Greenland 72°–75°N, mainly Caledonian: preliminary reports from the 1998 expedition, Danmarks og Grønlands Geologiske Undersøgelse Rapport 1999/19 (Ed. by A.K.Higgins & K.S.Frederiksen ), pp. 145–158. Geological Survey of Denmark, Copenhagen.
    [Google Scholar]
  48. Friedman, I. & O'Neil, J.R. (1977) Compilation of stable isotope fractionation factors of geochemical interest. US Geol. Surv. Prof. Pap., 440‐KK, 49p.
  49. Funder, S., Hjort, C., Landvik, J.Y., Nam, S., Reeh, N. & Stein, R. (1998) History of a stable ice margin – East Greenland during the Middle and Upper Pleistocene. Quat. Sci. Rev., 17, 77–123.
    [Google Scholar]
  50. Gee, D.G. & Page, L.M. (1994) Caledonian terrane assembly on Svalbard: new evidence from 40Ar/39Ar dating in Ny Friesland. Am. J. Sci., 294, 1166–1186.
    [Google Scholar]
  51. Gee, D.G., Johansson, Å., Ohta, Y., Tebenkov, A.M., Krasilýshchivov, A.A., Balashov, Y.A., Larianov, A.N., Gannibal, L.F. & Ryungenen, G.I. (1995) Grenvillian basement and a major unconformity within the Caledonides of Nordaustlandet, Svalbard. Precambrian Res., 70, 215–234.
    [Google Scholar]
  52. Gildor, H. & Tziperman, E. (2000) Sea ice as the glacial cycles' climate switch; the role of seasonal and orbital forcing. Paleoceanography, 15 (6), 605–615.
    [Google Scholar]
  53. Goodman, J.C. & Pierrehumbert, R.T. (2003) Glacial flow of floating marine ice in ‘Snowball Earth’. J. Geophys. Res., 108 (C10), 3308, 0.1029/2002JC001471.
  54. Grotzinger, J.P. & Knoll, A.H. (1995) Anomalous carbonate precipitates: is the Precambrian the key to the Permian? Palaios, 10, 578–596.
    [Google Scholar]
  55. Halverson, G.P. (2003) Towards an integrated stratigraphic and carbon‐isotopic record for the Neoproterozoic. PhD Thesis, Harvard University, Cambridge, MA, USA, 276pp.
  56. Halverson, G.P., Hoffman, P.F., Maloof, A.C. & Rice, A.H. (2003) Towards a composite carbon isotopic curve for the Neoproterozoic. (Abstract). Conference Proceedings of the IV South American Symposium on Isotope Geology, Salvador, Brazil, pp. 14–17.
  57. Halverson, G.P., Hoffman, P.F., Schrag, D.P. & Kaufman, A.J. (2002) A major perturbation of the carbon cycle before the Ghaub glaciation (Neoproterozoic) in Namibia: prelude to snowball Earth?Geochem., Geophys., Geosyst., 3, 10.1029/2001GC000244.
    [Google Scholar]
  58. Hambrey, M.J. (1982) Late Precambrian diamictites of northeastern Svalbard. Geol. Mag., 119, 527–551.
    [Google Scholar]
  59. Hambrey, M.J. (1983) Correlation of late Proterozoic tillites in the North Atlantic region and Europe. Geol. Mag., 120, 290–320.M
    [Google Scholar]
  60. Hambrey, M.J. & Spencer, A.M. (1987) Late Precambrian glaciation of Central East Greenland. Meddelelser om Grønland, 19, 50pp.
  61. Harland, W.B. (1997) The Geology of SvalbardGeol. Soc. London Mem., 17, 521pp.
    [Google Scholar]
  62. Harland, W.B. & Gayer, R.A. (1972) The Arctic Caledonides and earlier oceans. Geol. Mag., 109, 289–314.
    [Google Scholar]
  63. Harland, W.B., Hambrey, M.J. & Waddams, P. (1993) Vendian Geology of Svalbard. Norsk. Polarinst. Skr., 193, 150pp.
    [Google Scholar]
  64. Harland, W.B. & Wilson, C.B. (1956) The Hecla Hoek succession in Ny Friesland, Spitsbergen. Geol. Mag., 93, 265–286.
    [Google Scholar]
  65. Harland, W.B., Scott, R.A., Aukland, K.A. & Snape, I. (1992) The Ny Friesland Orogen, Spitsbergen. Geol. Mag., 129, 679–707.
    [Google Scholar]
  66. Hartz, E.H. & Torsvik, T.H. (2002) Baltica upside down: a new plate tectonic model for Rodinia and the Iapetus Ocean. Geology, 30, 255–258.
    [Google Scholar]
  67. Heaman, L.M., LeCheminant, A.N. & Rainbird, R.H. (1992) Nature and timing of Franklin igneous events, Canada: implications for a Late Proterozoic mantle plume and the breakup of Laurentia. Earth Planet. Sci. Lett., 109, 117–131.
    [Google Scholar]
  68. Henriksen, N. (1981) The Charcot Land tillite, Scoresby Sund, East Greenland. In: Earth's Pre‐Pleistocene Glacial Record (Ed. by M.J.Hambrey & W.B.Harland ), pp. 776–777. Cambridge University Press, Cambridge.
    [Google Scholar]
  69. Henriksen, N. & Higgins, A.K. (1976) East Greenland Caledonian fold belt. In: Geology of Greenland (Ed. by A.Escher & W.S.Watt ) Greenland Geological Survey, Copenhagen.
    [Google Scholar]
  70. Herrington, P.M. & Fairchild, I.J. (1989) Carbonate shelf and slope facies evolution prior to Vendian glaciation, central East Greenland. In: The Caledonide Geology of Scandinavia (Ed. by R.A.Gayer ), pp. 285–297. Graham Trotman, London.
    [Google Scholar]
  71. Higgins, A.K. (1981) The Late Precambrian Tillite Group of the Kong Oscars Fjord and Kejser Franz Josefs Fjord region of East Greenland. In: Earth's Pre‐Pleistocene Glacial Record (Ed by M.J.Hambrey & W.B.Harland ), pp. 778–781. Cambridge University Press, Cambridge.
    [Google Scholar]
  72. Higgins, A.K., Leslie, A.G. & Smith, M.P. (2001) Neoproterozoic–Lower Palaeozoic stratigraphical relationships in the marginal thin‐skinned thrust belt of the East Greenland Caledonides: comparisons with the foreland in Scotland. Geol. Mag., 138 (2), 143–160.
    [Google Scholar]
  73. Higgins, J.A. & Schrag, D.P. (2003) The aftermath of a snowball Earth. Geochem., Geophys., Geosyst., 4 (3), 1028. doi:10.1029/2002GC000403, 2003.
    [Google Scholar]
  74. Hill, A.C., Arouri, K., Gorjan, P. & Walter, M.R. (2000) Geochemistry of marine and nonmarine environments of a Neoproterozoic cratonic carbonate/evaporite: the Bitter Springs Formation, Central Australia. In: Carbonate Sedimentation and Diagenesis in an Evolving Precambrian World (Ed. by J.P.Grotzinger & N.P.James ), SEPM Spec. Publ. , 67, 327–344.
    [Google Scholar]
  75. Hill, A.C. & Walter, M.R. (2000) Mid‐Neoproterozoic (∼830–750 Ma) isotope stratigraphy of Australia and global correlation. Precambrian Res., 100, 181–211.
    [Google Scholar]
  76. Hoffman, P.F. (2002) Carbonates Bounding Glacial Deposits: Evidence for Snowball Earth Episodes and Greenhouse Aftermaths in the Neoproterozoic Otavi Group of Northern Namibia. International Association of Sedimentologists, Field Excursion Guidebook. Auckland Park, South Africa, pp. 1–49.
  77. Hoffmann, K.H. & Prave, A.R. (1996) A preliminary note on a revised subdivision and regional correlation of the Otavi Group based on glaciogenic diamictites and associated cap dolostones. Commun. Geol. Soc. Namibia, 11, 81–86.
    [Google Scholar]
  78. Hoffman, P.F., Kaufman, A.J., Halverson, G.P. & Schrag, D.P. (1998) A Neoproterozoic snowball Earth. Science, 281, 1342–1346.
    [Google Scholar]
  79. Hoffman, P.F. & Schrag, D.P. (2002) The snowball Earth hypothesis: testing the limits of global change. Terra Nova, 14, 129–155.
    [Google Scholar]
  80. Hoffman, P.F., Van Dusen, A., Halverson, G.P., Saenz, J., Kaufman, A.J. & Schrag, D.P. (2002) Significance of sea‐floor barite cements in Marinoan‐aged post‐glacial cap carbonates (abstract). Goldschmidt Conference Proceedings, Davos, A847.
  81. Irwin, H., Curtis, C. & Coleman, M. (1977) Isotopic evidence for source of diagenetic carbonates formed during burial of organic‐rich sediments. Nature, 269, 209–213.
    [Google Scholar]
  82. Jacobsen, S.B. & Kaufman, A.J. (1999) The Sr, C, and O isotopic evolution of Neoproterozoic seawater. Chem. Geol., 161, 37–57.
    [Google Scholar]
  83. James, N.P., Narbonne, G.M. & Kyser, T.K. (2001) Late Neoproterozoic cap carbonates: Mackenzie Mountains, northwestern Canada: precipitation and global glaciation. Can. J. Earth Sci., 38, 1229–1262.
    [Google Scholar]
  84. Johannson, Å., Larianov, A.N., Tebenkov, A.M., Gee, D.G., Whitehouse, M.J. & Vestin, J.2000Grenvillian magmatism of western and central Nordaustlandet, northeastern Svalbard. Trans. R. Soc. Edinburgh, 90, 221–234.
    [Google Scholar]
  85. Kamo, S.L. & Gower, C. (1994) Note: U–Pb baddeleyite dating clarifies age of characteristic paleomagnetic remanence of Long Range dykes, southeastern Labrador. Atlantic Geol., 30, 259–262.
    [Google Scholar]
  86. Katz, H.R. (1960) Late Precambrian to Cambrian stratigraphy in East Greenland. In Geology of the Arctic: Proceedings of the First International Symposium on ArcticGeology (Ed by G.O.Raasch ), 299–328. Toronto University Press, Toronto.
    [Google Scholar]
  87. Kaufman, A.J., Knoll, A.H. & Narbonne, G.M. (1997) Isotopes, ice ages, and terminal Proterozoic earth history. Proc. Natl. Acad. Sci., 94, 6600–6605.
    [Google Scholar]
  88. Kemper, E. & Schmitz, H.H. (1981) Glendonite‐Indikatoren des Polarmarinen Abagerungsmilieus. Geol. Rundsch, 70, 759–773.
    [Google Scholar]
  89. Kendall, C.G.St.C. & Skipwith, P.A.d'E. (1969) Holocene shallow water carbonate and evaporite sediments of Khor al Bazam, abu Dhabi, South West Persion Gulf. Bull. Am. Assoc. Petrol. Geol., 53, 841–869.
    [Google Scholar]
  90. Kendall, C.G.St.C. & Warren, J. (1987) A review of the origin and setting of tepees and their associated fabrics. Sedimentology, 34, 1007–1027.
    [Google Scholar]
  91. Kennedy, M.J. (1996) Stratigraphy, sedimentology, and isotopic geochemistry of Australian Neoproterozoic postglacial cap dolostones: Deglaciation, δ 13C excursions, and carbonate precipitation. J. Sediment. Res., 66, 1050–1064.
    [Google Scholar]
  92. Kennedy, M.J., Christie‐Blick, N. & Sohl, L.E. (2001) Carbon isotopic composition of Neoproterozoic glacial carbonates as a test of paleoceanographic models for snowball Earth phenomena. Geology, 29, 1135–1138.
    [Google Scholar]
  93. Kennedy, M.J., Runnegar, B., Prave, A.R., Hoffman, K.H. & Arthur, M. (1998) Two or four Neoproterozoic glaciations?Geology, 26, 1059–1063.
    [Google Scholar]
  94. Kennedy, S.K., Hopkins, D.M. & Pickthorn, W.J. (1987) Ikaite, the glendonite precursor, in estuarine sediments at Barrow, Arctic Alaska. GSA Abstr. Programs, 19 (7), 725.
    [Google Scholar]
  95. Kirschvink, J.L. (1992) Late Proterozoic low latitude glaciation: the snowball earth. In: The Proterozoic Biosphere: A Multidisciplinary Study (Ed by J.W.Schopf & C.Klein ), pp. 51–52. Cambridge University Press, Cambridge.
    [Google Scholar]
  96. Klein, C. & Beukes, N.J. (1993) Sedimentology and geochemistry of the glaciogenic late Proterozoic Rapitan iron‐formation in Canada. Econ. Geol., 84, 1733–1774.
    [Google Scholar]
  97. Knoll, A.H. (2000) Learning to tell Neoproterozoic time. Precambrian Res., 100, 3–20.
    [Google Scholar]
  98. Knoll, A.H., Hayes, J.M., Kaufman, A.J., Swett, K. & Lambert, I.B. (1986) Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbard and east Greenland. Nature, 321, 832–837.
    [Google Scholar]
  99. Knoll, A.H. & Swett, K. (1987) Micropaleontology across the Precambrian–Cambrian boundary in Spitsbergen. J. Palaeontol., 61, 898–926.
    [Google Scholar]
  100. Knoll, A.H. & Swett, K. (1990) Carbonate deposition during the Late Proterozoic era: an example from Spitsbergen. Am. J. Sci., 290‐A, 104–132.
    [Google Scholar]
  101. Knoll, A.H., Swett, K. & Burkhart, E. (1989) Paleoenvironmental distribution of microfossils and stromatolites in the Upper Proterozoic Backlundtoppen Formation, Spitsbergen. J. Paleontol., 63, 129–145.
    [Google Scholar]
  102. Knoll, A.H., Swett, K. & Mark, J. (1991) Paleobiology of a Neoproterozoic tidal flat lagoon complex: the Draken Conglomerate Formation, Spitsbergen. J. Paleontol., 65, 531–569.
    [Google Scholar]
  103. Koch, L. (1945) The East Greenland ice. Meddelelser om Grønland, 130, 1–373.
    [Google Scholar]
  104. Kulling, O. (1934) Scientific results of the Swedish–Norwegian arctic expedition in the summer of 1931. Geogr. Annlr. Stockh., 16, 161–253.
    [Google Scholar]
  105. Larianov, A., Gee, D.G., Tebenkov, A.M. & Witt‐Nillson, P. (1998) Detrital zircon ages from the Planetfjella Group of the Mosselhalvøya Nappe, NE Spitsbergen, Svalbard. International Conference on Arctic Margins, III, Celle, Germany, pp. 109–110.
  106. Lewis, J.P., Weaver, A.J., Johnston, S.T. & Eby, M. (2003) The Neoproterozoic ‘Snowball Earth’: dynamic sea ice over a quiescent ocean. Paleoceanography, 18 (4), 10.1029/2003PA000926.
    [Google Scholar]
  107. Lyberis, N. & Manby, G. (1999) Continental collision and lateral escape deformation in the lower and upper crust: an example from Caledonide Svalbard. Tectonics, 18, 40–63.
    [Google Scholar]
  108. MacAyeal, D.R. (1993) A low‐order model of the Heinrich Event cycle. Palaeoceanograph, 8, 767–773.
    [Google Scholar]
  109. McKay, C.P., Clow, G.D., Wharton, R.A.Jr & Squyres, S.W. (1985) Thickness of ice on perennially frozen lakes. Nature, 313, 561–562.
    [Google Scholar]
  110. McKirdy, D.M., Burgess, J.M., Lemon, N.M., Yu, X., Cooper, A.M., Gostin, V.A., Jenkins, R.J.F. & Both, R.A. (2001) A chemostratigraphic overview of the late Cryogenian interglacial sequence in the Adelaide Fold‐Thrust Belt, South Australia. Precambrian Res., 106, 149–186.
    [Google Scholar]
  111. Moncrieff, A.C.M. (1989) The Tillite Group and related rocks of East Greenland: implications for Late Proterozoic palaeogeography. In: The Caledonian Geology of Scandinavia (Ed. by R.A.Gayer ), pp. 285–297. Graham & Trotman, London.
    [Google Scholar]
  112. Moncrieff, A.C.M. & Hambrey, M.J. (1988) Late Precambrian glacially‐related grooved and striated surfaces in the Tillite Group of Central East Greenland. Paleogeogr., Paleoclimat., Paleoecol., 65, 183–200.
    [Google Scholar]
  113. Moncrieff, A.M. & Hambrey, M.J. (1990) Marginal‐marine glacial sedimentation in the late Precambrian succession of East Greenland. In: Glacimarine Environments: Processes and Sediments (Ed. by J.A.Dowdeswell & J.D.Scourse ), Geol. Soc. London , Special Publication 53, 387–410.
    [Google Scholar]
  114. Morrow, D.W. & Ricketts, B.D. (1986) Chemical controls on the precipitation of mineral analogues of dolomite: the sulfate enigma. Geology, 16, 408–410.
    [Google Scholar]
  115. Murthy, G., Gower, C., Tubrett, M. & Patzold, R. (1992) Paleomagnetism of Eocambrian Long Range dykes and Double Mer Formation from Labrador, Canada. Can. J. Earth Sci., 29, 1224–1234.
    [Google Scholar]
  116. Myrow, P. & Kaufman, A.J. (1998) A newly‐discovered cap carbonate above Varanger age glacial deposits in Newfoundland, Canada. J. Sediment. Res., 69, 784–793.
    [Google Scholar]
  117. Nogueira, A.C.R., Riccomini, C., Sial, A.N., Moura, C.A.V. & Fairchild, T.R. (2003) Soft‐sediment deformation at the base of the Neoproterozoic Puga cap carbonate (southwestern Amazon craton, Brazil): confirmation of rapid icehouse–greenhouse transition in snowball Earth. Geology, 31, 613–616.
    [Google Scholar]
  118. Nystuen, J.P. (1985) Facies and preservation of glaciogenic sequences from the Varanger ice age in Scandinavia and other parts of the North Atlantic Region. Palaeogeogr., Palaeoclimatol., Palaeoecol., 51, 209–229.
    [Google Scholar]
  119. Orheim, O. & Elverhøi, A. (1981) Model for submarine glacial deposition. Ann. Glaciol., 2, 123–128.
    [Google Scholar]
  120. Payne, A.J. & Dongelmans, P.W. (1997) Self‐organization in the thermomechanical flow of ice sheets. J. Geophys. Res., 102 (B), 12,219–12,233.
    [Google Scholar]
  121. Phillips, W.E.A. & Friderichsen, J.D. (1981) The Late Precambrian Gåseland tillite, Scoresby Sund, East Greenland. In: Earth's Pre‐Pleistocene Glacial Record (Ed. by M.J.Hambrey & W.B.Harland ), pp. 773–775. Cambridge University Press, Cambridge.
    [Google Scholar]
  122. Pisarevksy, S.A., Wingate, T.D., Powell, C.McA., Johnson, S. & Evans, D.A.D. (2003) Models of Rodinia assembly and fragmentation. In: Proterozoic East Gondwana: Supercontinental assembly and breakup (Ed. by M.Yoshida , B.F.Windley , S.Dasgupta & C.McA.Powell ), Geol. Soc. London Spec. Publication, 206, 35–55.
  123. Poulsen, C.J. (2003) Absence of a runaway ice‐albedo feedback in the Neoproterozoic. Geology, 31, 473–476.
    [Google Scholar]
  124. Poulsen, C.J., Pierrehumbert, R.T. & Jacob, R.L. (2001) Impact of ocean dynamics on the simulation of the Neoproterozoic ‘snowball Earth’. Geophys. Res. Lett., 28, 1575–1578.
    [Google Scholar]
  125. Prave, A.R. (1999) Two diamictites, two cap carbonates, two δ 13C excursions, two rifts: the Neoproterozoic Kingston Peak Formation, Death Valley, California. Geology, 27, 339–342.
    [Google Scholar]
  126. Preiss, W.V. (2000) The Adelaide Geosyncline of South Australia and its significance in Neoproterozoic continental reconstruction. Precambrian Res., 100, 21–63.
    [Google Scholar]
  127. Reimnitz, E., Kempema, E.W. & Barnes, P.W. (1987) Anchor ice, seabed freezing, and sediment dynamics in shallow Arctic seas. J. Geophys. Res., 92 (C13), 14,671–14,678.
    [Google Scholar]
  128. Schrag, D.P., Berner, R.A., Hoffman, P.F. & Halverson, G.P. (2002) On the initiation of a snowball Earth. Geochem., Geophys., Geosyst., 3, 10.1029/2001GC000219.
    [Google Scholar]
  129. Sellers, W.D. (1969) A global climatic model based on the energy balance of the Earth–atmosphere system. J. Appl. Meteorol., 8, 392–400.
    [Google Scholar]
  130. Schmidt, P.W. & Williams, G.E. (1995) The Neoproterozoic climatic paradox: equatorial paleolatitude for Marinoan glaciation near sea level in South Australia. Earth Planet. Sci. Lett., 134, 107–124.
    [Google Scholar]
  131. Shields, G., Stille, P., Brasier, M.D. & Atudorei, N.‐V. (1997) Stratified oceans and oxygenation of the late Precambrian environment: a post glacial geochemical record from the Neoproterozic of W. Mongolia. Terra Nova, 9, 218–222.
    [Google Scholar]
  132. Smith, M.P. & Robertson, S. (1999a) The Nathorst Land Group (Neoproterozoic) of East Greenland—lithostratigraphy, basin geometry, and tectonic history. In: Geology of East Greenland 72°–75°N, Mainly Caledonian: Preliminary Reports from the 1998 Expedition, Danmarks og Grønlands Geologiske Undersøgelse Rapport 1999/19 (Ed. by A.K.Higgins & K.S.Frederiksen ), pp. 127–142. Geological Survey of Denmark, Copenhagen.
    [Google Scholar]
  133. Smith, M.P. & Robertson, S. (1999b) Vendian‐Lower Palaeozoic stratigraphy of the parautochthon in the Målebjerg and Eleonore Sø thrust windows, East Greenland Caledonides. In: Geology of East Greenland 72°–75°N, Mainly Caledonian: Preliminary Reports from the 1998 Expedition, Danmarks og Grønlands Geologiske Undersøgelse Rapport 1999/19 (Ed. by A.K.Higgins & K.S.Frederiksen ), pp. 169–182. Geological Survey of Denmark, Copenhagen.
    [Google Scholar]
  134. Soffer, G. (1998) Evolution of a Neoproterozoic continental margin subject to tropical glaciation. B.A. Thesis, Harvard College, Cambridge, MA, USA.
  135. Sohl, L.E., Christie‐Blick, N. & Kent, D.V. (1999) Paleomagnetic polarity reversals in Marinoan (ca. 600 Ma) glacial deposits of Australia: implications for the duration of low-latitude glaciations in Neoproterozoic time. Geol. Soc. Am. Bull., 111, 1120–1139.
    [Google Scholar]
  136. Sønderholm, M. & Tirsgaard, H. (1993) Lithostratigraphic framework of the Upper Proterozoic Eleonore Bay Supergroup of East and North‐East Greenland. Bull. Grønlands Geologiske Undersøgelse, 167, 38pp.
    [Google Scholar]
  137. Spencer, A.M. (1985) Mechanisms and environments of deposition of Late Precambrian geosynclinal tillites: Scotland and East Greenland. Palaeogeogr., Paleoclimatatol., Paleoecol., 51, 143–157.
    [Google Scholar]
  138. Suess, E., Balzer, W., Hesse, K.‐F., Müller, P.J., Ungerer, C.A. & Wefer, G. (1982) Calcium carbonate hexahydrate from organic‐rich sediments of the Antarctic Shelf: precursors of glendonites. Science, 216, 1128–1131.
    [Google Scholar]
  139. Swainson, I.P. & Hammond, R.P. (2001) Ikaite, CaCO3·6H2O: cold comfort for glendonites as paleothermometers. Am. Mineral., 86, 1530–1533.
    [Google Scholar]
  140. Torsvik, T.H., Smethurst, M.A., Meert, J.G., Van der Voo, R., McKerrow, W.S., Brasier, M.D., Sturt, B.A. & Walderhaug, H.J. (1996) Continental break‐up and collision in the Neoproterozoic and Paleozoic – A tale of Baltica and Laurentia. Earth-Sci. Rev., 40, 229–258.
    [Google Scholar]
  141. Walter, M.R., Veevers, J.J., Calvert, S.E., Gorjan, P. & Hill, A.C. (2000) Dating the 840–544 Ma Neoproterozoic interval by isotopes of strontium, carbon, and sulfur in seawater, and some interpretative models. Precambrian Res., 100, 371–433.
    [Google Scholar]
  142. Warren, S.G., Brandt, R.E., Grenfell, T.C. & McKay, C.P. (2002) Snowball Earth: ice thickness on the tropical ocean. J. Geophys. Res., 107 (C10), 3167.
    [Google Scholar]
  143. Williams, G.E. (1979) Sedimentology, stable‐isotope geochemistry and palaeoenvironment of dolostones capping late Precambrian glacial sequences in Australia. Austr. J. Earth Sci., 26, 377–386.
    [Google Scholar]
  144. Williams, G.E. (1996) Soft‐sediment deformation structures from the Marinoan glacial succession, Adelaide fold belt: implications for the paleolatitude of late Neoproterozoic glaciation. Sediment. Geol., 106, 165–175.
    [Google Scholar]
  145. Williams, G.E. & Schmidt, P. (2000) Proterozoic equatorial glaciation: has ‘snowball Earth’ a snowball's chance? Aust. Geol., 117, 21–25.
    [Google Scholar]
  146. Wilson, C.B. (1961) The upper Middle Hecla Hoek rocks of Ny Friesland, Spitsbergen. Geol. Mag., 98, 89–116.
    [Google Scholar]
  147. Wilson, C.B. & Harland, W.B. (1964) The Polarisbreen Series and other evidences of late Pre‐Cambrian ice ages in Spitsbergen. Geol. Mag., 101, 198–219.
    [Google Scholar]
  148. Yoshioka, H., Asahara, Y., Tojo, B. & Kawakami, S. (2003) Systematic variations in C, O, and Sr isotopes and elemental concentrations in Neoproterozoic carbonates in Namibia: implications for glacial to interglacial transition. Precambrian Res., 124, 69–85.
    [Google Scholar]
  149. Zhang, P., Molnar, P. & Downs, W.R. (2001) Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate change on erosion rates. Nature, 410, 891–897.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2004.00234.x
Loading
/content/journals/10.1111/j.1365-2117.2004.00234.x
Loading

Data & Media loading...

Supplements

Appendix S1. Data table of d13C and d18O data presented in this paper.

Supporting info item

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error