1887
Volume 16, Issue 2
  • E-ISSN: 1365-2117

Abstract

Abstract

The lateral propagation of faults and folds is known to be an important process during the development of mountain belts, but little is known about the manner in which along‐strike fault–fold growth is expressed in pre‐ and syntectonic (growth) strata. We use a coupled tectonic and stratigraphic model to investigate the along‐strike stratigraphic expression of fault‐related folds/uplifts that grow in both the transport and strike directions. We consider faults that propagate following a quadratic (nonself‐similar evolution) or linear (self‐similar evolution) scaling law, using different slip distributions per episode of fault propagation, under general background sedimentation. We find that the long‐strike geometry of pre‐ and syntectonic strata and the geometry of growth axial surfaces reflect the mode of fault propagation. The geometry of strata observed in the model is similar to that observed in natural contractional structures when: (1) the evolution of the fault is nonself‐similar, or (2) the fault grows as a result of thrust faulting events with similar displacements along strike that are terminated abruptly at the fault tips.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2004.00230.x
2004-05-07
2024-04-25
Loading full text...

Full text loading...

References

  1. Ackermann, R.V., Schlische, R.W. & Withjack, M.O. (2001) The geometric and statistical evolution of normal fault systems: an experimental study of the effects of mechanical layer thickness on scaling laws. J. Struct. Geol., 23, 1803–1819.
    [Google Scholar]
  2. Alexander, J., Bridge, J.S., Leeder, M.R., Collier, R.E.L. & Gawthorpe, R.L. (1994) Holocene meander‐belt evolution in an active extensional basin, southwestern Montana. J. Sed. Res., B64, 542–559.
    [Google Scholar]
  3. Alvarez, W. (1999) Drainage on evolving fold‐thrust belts: a study of transverse canyons in the Apennines. Basin Res., 11, 267–284.
    [Google Scholar]
  4. Bennedetti, L., Tapponier, P., King, G.C.P., Meyer, B. & Manighetti, I. (2000) Growth folding and active thrusting in the Montello region, Veneto, northern Italy. J. Geophys. Res., 105 B1, 739–766.
    [Google Scholar]
  5. Bernal, A. & Hardy, S. (2002) Syn‐tectonic sedimentation associated with three‐dimensional fault‐bend fold structures: a numerical approach. J. Struct. Geol., 24, 609–635.
    [Google Scholar]
  6. Burbank, D.W. & Anderson, R.S. (2001) Tectonic Geomorphology , 274 pp. Blackwell Science, Cambridge.
    [Google Scholar]
  7. Burbank, D.W., Mclean, J.K., Bullen, M., Abdrakhmatov, K.Y. & Miller, M.G. (1999) Partitioning of intermontane basin by thrust‐related folding, Tien Shan, Kyrgyzstan. Basin Res., 11, 75–92.
    [Google Scholar]
  8. Burbank, D.W., Meigs, A. & Brozovic, N. (1996) Interactions of growing folds and coeval depositional systems. Basin Res., 8, 199–223.
    [Google Scholar]
  9. Bürgmann, R., Pollard, D.D. & Martel, S.J. (1994) Slip distributions on faults: effects of stress gradients, inelastic deformation, heterogeneous host-rock stiffness, and fault interaction. J. Struct. Geol., 16, 1675–1690.
    [Google Scholar]
  10. Casas‐Sainz, A.M., Cortes, A.L. & Maestro, A. (2002) Sequential limb rotation and kink‐band migration recorded by growth strata, Almazán Basin, North Spain. Sed. Geol., 146, 25–45.
    [Google Scholar]
  11. Clark, R.M. & Cox, S.J.D. (1996) A modern regression approach to determining fault displacement‐length scaling relationships. J. Struct. Geol., 18, 147–152.
    [Google Scholar]
  12. Cooper, K., Hardy, S. & Gawthorpe, W. (2003) Stratigraphic and structural expression of the lateral growth of thrust fault‐propagation folds: results and implications from kinematic modelling. Basin Res., 15, 165–182.
    [Google Scholar]
  13. Cowie, P.A. & Roberts (2001) Constraining slip rates and spacings for active normal faults. J. Struct. Geol., 23, 1901–1915.
    [Google Scholar]
  14. Cowie, P.A. & Scholz, C.H. (1992a) Physical explanation for the displacement‐length relationship of faults using a post‐yield fracture mechanics model. J. Struct. Geol., 14, 1133–1148.
    [Google Scholar]
  15. Cowie, P.A. & Scholz, C.H. (1992b) Displacement‐length scaling relationship for faults: data synthesis and discussion. J. Struct. Geol., 14, 1149–1156.
    [Google Scholar]
  16. Dawers, N.H., Anders, M.H. & Scholz, C.H. (1993) Growth of normal faults: displacement-length scaling. Geology, 21, 1107–1110.
    [Google Scholar]
  17. Delcaillau, B., Deffontaines, B., Floissac, L., Angelier, J., Deramond, J., Souquet, P., Chu, H.T. & Lee, J.F. (1998) Morphotectonic evidence from lateral propagation of an active frontal fold; Pakuashan anticline, foothills of Taiwan. Geomorphology, 24, 263–290.
    [Google Scholar]
  18. Ferril, D.A. & Morris, A.P. (2001) Displacement gradient and deformation in normal fault systems. J. Struct. Geol., 23, 619–638.
    [Google Scholar]
  19. Ford, M., Williams, E., Artoni, A., Verges, J. & Hardy, S. (1997) Progressive evolution of a fault‐related fold pair from growth strata geometries, Sant Lorenç de Morunys, SE Pyrenees. J. Struct. Geol., 19, 413–441.
    [Google Scholar]
  20. Gallango, O., Novoa, E. & Bernal, A. (2002) The petroleum system of the central Perijá fold belt, western Venezuela. Am. Assoc. Petrol. Geol. Bull., 86, 1263–1284.
    [Google Scholar]
  21. Gawthorpe, R.L., Jackson, C.A.‐L., Young, M.J., Sharp, I.R., Moustafa, A.R. & Leppard, C.W. (2003) Normal fault growth, displacement localisation and the evolution of normal fault population: the Hammam Faraun fault block, Suez rift, Egypt. J. Struct. Geol., 25, 883–895.
    [Google Scholar]
  22. Gawthorpe, R.L., Sharp, I., Underhill, J.R. & Gupta, S. (1997) Linked sequence, stratigraphic and structural evolution of propagating normal faults. Geology, 25, 795–798.
    [Google Scholar]
  23. Gillespie, P.A., Walsh, J.J. & Watterson, J. (1992) Limitations of dimension and displacement data from single faults and the consequences for data analysis and interpretation. J. Struct. Geol., 14, 1157–1172.
    [Google Scholar]
  24. Gross, M.R., Gutierrez‐Alonso, G., Bai, T., Wacker, M.A. & Collinsworth, K.B. (1997) Influence of mechanical stratigraphy and kinematics on fault scaling relations. J. Struct. Geol., 19, 171–183.
    [Google Scholar]
  25. Gupta, S. & Scholz, C.H. (2000) A model of normal fault interaction based on observations and theory. J. Struct. Geol., 22, 1221–1232.
    [Google Scholar]
  26. Hardy, S. & Poblet, J. (1995) The velocity description of deformation. Paper 2: sediment geometry associated with fault-bend and fault-propagation folds. Mar. Petrol. Geol., 12, 165–176.
    [Google Scholar]
  27. Jackson, J.A., Norris, R. & Youngson, J. (1996) The structural evolution of active fault and fold systems in central Otago, New Zealand: evidence revealed by drainage patterns. J. Struct. Geol., 18, 217–234.
    [Google Scholar]
  28. Jackson, J.A., Ritz, J.‐F., Siame, L., Raisbeck, G., Yiou, F., Norris, R., Youngson, J. & Bennett, E. (2002) Fault growth and landscape development rates in Otago, New Zealand, using in situ cosmogenic 10Be. Earth Planet. Sci. Lett., 195, 185–193.
    [Google Scholar]
  29. Ma, K.‐F., Song, T.‐R., Lee, S.‐J. & Wu, H.‐I. (2000) Spatial slip distribution of the September 20, 1999, Chi‐Chi, Taiwan, earthquake (Mw 7.6) – inverted from teleseismic data. Geophys. Res. Lett., 27, 3417–3420.
    [Google Scholar]
  30. Mansfield, C. & Cartwright, J. (2001) Fault growth by linkage: observations and implications from analogue models. J. Struct. Geol., 23, 745–763.
    [Google Scholar]
  31. Marrett, R. & Allmendinger, R.W. (1991) Estimates of strain due to brittle faulting: sampling of fault populations. J. Struct. Geol., 13, 735–737.
    [Google Scholar]
  32. Marshall, G., Stein, R.S. & Thatcher, W. (1991) Faulting geometry and slip from co‐seismic elevation changes; the 18 October 1989, Loma Prieta, California, earthquake. In: The 1989 Loma Prieta, California, earthquake and its effects (Ed. by T.C.Hanks ), Spec. Publ.Seism. Soc. Am.Bull., 81, 1660–1693.
    [Google Scholar]
  33. Martel, S.J.1999Mechanical controls on fault geometry. J. Struct. Geol., 21, 585–596.
    [Google Scholar]
  34. Masaferro, J.L., Bulnes, M., Poblet, J. & Eberli, G.P. (2002) Episodic folding inferred from syntectonic carbonate sedimentation: the Santaren anticline, Bahamas foreland. Sed. Geol., 146, 11–24.
    [Google Scholar]
  35. Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Feigl, K. & Rabaute, T. (1993) The displacement of the Landers earthquake mapped by radar interferometry. Nature, 364, 138–142.
    [Google Scholar]
  36. Meyer, V., Nicol, A., Childs, C., Walsh, J.J. & Watterson, J. (2002) Progressive localisation of strain during the evolution of a normal fault population. J. Struct. Geol., 24, 1215–1231.
    [Google Scholar]
  37. Morewood, N.C. & Roberts, G.P. (1999) Lateral propagation of the surface trace of the South Alkyonides normal fault segment, central Greece: its impact on models of fault growth and displacement-length relationships. J. Struct. Geol., 21, 635–652.
    [Google Scholar]
  38. Morley, C.K. (1999) Patterns of displacement along large normal faults: Implications for basin evolution and fault propagation, based on examples from East Africa. Am. Assoc. Petrol. Geol. Bull., 83, 613–634.
    [Google Scholar]
  39. Muller, K. & Talling, P. (1997) Geomorphic evidence for tear faults accommodating lateral propagation of an active fault‐bend fold, Wheeler Ridge, California. J. Struct. Geol., 19, 397–411.
    [Google Scholar]
  40. Muraoka, H. & Kamata, H. (1983) Displacement distribution along minor fault traces. J. Struct. Geol., 5, 483–495.
    [Google Scholar]
  41. Peacock, D.C.P. & Sanderson, D.J. (1996) Effects of propagation rate on displacement variations along faults. J. Struct. Geol., 18, 311–320.
    [Google Scholar]
  42. Poblet, J. & Hardy, S. (1995) Reverse modelling of the Pico del Aguila Anticline, Spain. J. Struct. Geol., 17, 1707–1724.
    [Google Scholar]
  43. Pollard, D.D. & Segall, P. (1987) Theoretical displacements and stresses near fractures in rock; with applications to faults, joints, veins, dikes, and solutions surfaces. In: Fracture mechanics of rocks (Ed. by B.K.Atkinson ), pp. 277–349. Academic Press, London.
    [Google Scholar]
  44. Scholz, C.H. (1990) The mechanics of earthquakes and faulting , 439 pp. Cambridge University Press, Cambridge.
    [Google Scholar]
  45. Scholz, C.H., Dawers, N.H., Yu, J.‐Z., Anders, M.H. & Cowie, P.A. (1993) Fault growth and fault scaling laws: preliminary results. J. Geophys. Res., 98, 21951–21961.
    [Google Scholar]
  46. Shaw, J.H., Hook, S.C. & Suppe, J. (1994) Structural trend analysis by axial surface mapping. Am. Assoc. Petrol. Geol. Bull., 78, 700–721.
    [Google Scholar]
  47. Stewart, S.A. (2001) Displacement distributions on extensional faults: Implications for fault stretch, linkage, and seal. Am. Assoc. Petrol. Geol. Bull., 85, 587–599.
    [Google Scholar]
  48. Suppe, J., Chou, G.T. & Hook, S.C. (1991) Rates of folding and faulting determined from growth strata. In: Thrust Tectonics (Ed. by K.R.McClay ), pp. 105–121. Chapman & Hall, London.
    [Google Scholar]
  49. Suppe, J., Sabat, F., Muñoz, J., Poblet, E., Roca, E. & Verges, J. (1997) Bed‐by‐bed fold growth by kink band migration: Sant Lorenç de Morunys, eastern Pyrenees. J. Struct. Geol., 19, 443–461.
    [Google Scholar]
  50. Walsh, J.J., Nicol, A. & Childs, C. (2002) An alternative model for the growth of faults. J. Struct. Geol., 24, 1669–1675.
    [Google Scholar]
  51. Walsh, J.J. & Watterson, J. (1988) Analysis of the relationship between displacements and dimensions of faults. J. Struct. Geol., 10, 239–247.
    [Google Scholar]
  52. Watterson, J., Walsh, J.J., Gillespie, P.A. & Easton, S. (1996) Scaling systematics of fault sizes on a large‐scale range fault map. J. Struct. Geol., 18, 199–214.
    [Google Scholar]
  53. Waltham, D. (1992) Mathematical modelling of sedimentary basin processes. Mar. Petrol. Geol., 9, 265–273.
    [Google Scholar]
  54. Willemse, E.J.M. (1997) Segmented normal faults: Correspondence between three-dimensional mechanical models and field data. J. Geophys. Res., 102, 675–692.
    [Google Scholar]
  55. Willemse, E.J.M., Pollard, D.D. & Aydin, A. (1996) Three‐dimensional analysis of slip distributions on normal fault arrays with consequences for fault scaling. J. Struct. Geol., 18, 295–309.
    [Google Scholar]
  56. Yielding, G., Needham, T. & Jones, H. (1996) Sampling of fault population using sub‐surface data: a review. J. Struct. Geol., 18, 135–146.
    [Google Scholar]
  57. Zoetemeijer, R., Cloeting, S., Sassi, W. & Roure, F. (1993) Modelling of piggyback‐basin stratigraphy: record of tectonic evolution. Tectonophysics, 226, 253–269.
    [Google Scholar]
  58. Zoetemeijer, R., Sassi, W., Roure, F. & Cloeting, S. (1992) Stratigraphic and kinematic modelling of thrust evolution, northern Apennines. Geology, 20, 1035–1038.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2004.00230.x
Loading
/content/journals/10.1111/j.1365-2117.2004.00230.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error