1887
Volume 2 Number 2
  • E-ISSN: 1365-2117

Abstract

The sensitivity of backstripping calculations (sedimentation rates and tectonic subsidence) to uncertainties regarding porosity reduction is examined. Models simulating compaction and externally sourced cementation are considered to provide first‐order bounds on the thickness and mass changes for individual sedimentary units. These bounds can be used to estimate uncertainties in sedimentation rate and subsidence estimates. With these models, the timing of cement development can be regarded as unimportant for backstripping calculations. Calculations have been made to evaluate the effect on backstripping calculations of uncertainties in sediment porosity, density and the mechanisms of porosity reduction. Departures from theoretically predicted subsidence curves of the order of 100 m or so have been variously interpreted as the result of fluctuations or uncertainties in sea‐level, palaeobathymetry, tectonic stress, sedimentation rates and stratigraphic age. Two examples are given to illustrate that such departures may occur in some subsidence curves merely as a result of imprecise assumptions regarding porosity reduction. Consideration should be given to the uncertainties in models for porosity reduction when using subsidence curves to infer second order tectonic influence during basin evolution.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.1989.tb00029.x
2007-11-06
2024-04-25
Loading full text...

Full text loading...

References

  1. Angevine, CL. & Turcotte, D. L. (1983) Porosity reduction by pressure solution: A theoretical model for quartz arenites. Bull. Geol. soc. Am.94, 1129–1134.
    [Google Scholar]
  2. Baldwin, B. & Butler, C. O. (1985) Compaction curves. Bull. Am. Ass. Petrol Geol.59, 622–626.
    [Google Scholar]
  3. Barton, P. & Wood, R. (1984) Tectonic evolution of the North Sea basin: crustal stretching and subsidence. Geophys. J. R. astr. Soc.79, 987–1022.
    [Google Scholar]
  4. Beard. D. C. & Weyl, P. K. (1973) Influence of texture on porosity and permeability of unconsolidated sand. Bull. Am. Ass. Petrol Geol.57, 349–369.
    [Google Scholar]
  5. Bertram, G. T. & Milton, N.J. (1988) Reconstructing basin evolution from sedimentary thickness; the importance of palaeobathymetric control, with reference to the North Sea. Basin Research1, 247–257.
    [Google Scholar]
  6. Bethke, C. M. (1985) A numerical model of compaction driven groundwater flow and heat transfer and its application to the palaeohydrology of intracratonic sedimentary basins. J. geophys. Res.90, 6817–6828.
    [Google Scholar]
  7. Biot, M. A. (1941) General theory of three dimensional consolidation. J Appt. Phys.12, 155–164.
    [Google Scholar]
  8. Biot, M. A. (1955) Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys.26, 182–185.
    [Google Scholar]
  9. Bjørlykke, K. (1984) Formation of secondary porosity: How important is it? In: Clastic Diagenesis (Ed. by D. A.McDonald & R. G.Surdam). Mem. Am. Ass. Petrol Geol.37, 277–286.
    [Google Scholar]
  10. Blanche, J. B. & Whitaker, J. H. McD. (1978) Diagenesis of part of the Brent Sand Formation (Middle Jurassic) of the northern North Sea Basin. J. geol. Soc. Land.135, 73–82.
    [Google Scholar]
  11. Boles, J. R. (1984) Secondary porosity reactions in the Stevens Sandstone, San Joaquin Valley, California. In: Clastic Diagenesis (Ed. by D. A.McDonald & R. C.Surdam). Mem. Am. Ass. Petrol Geol.37, 217–224.
    [Google Scholar]
  12. Bond, G. C. & Kominz, M. A. (1984) Construction of tectonic subsidence curves for the lower Palaeozoic miogeocline, southern Canadian Rocky Mountains: implications for subsidence mechanisms, age of breakup and crustal thinning. Bull. geol. Soc. Am.95, 155–173.
    [Google Scholar]
  13. Chadwick, R. A. (1986) Extension tectonics in the Wessex Basin, southern England. J. geol. Soc. Lond.143, 465–488.
    [Google Scholar]
  14. Chilingarian, G. V. & Wolf, K. H. (EDS)
    Chilingarian, G. V. & Wolf, K. H. (EDS) (1976) Compaction of coarse‐grained sediments, II, Developments in sedimentology18bElsevier, Holland , 808 pp.
    [Google Scholar]
  15. Dewers, T. & Ortoleva, P. (1988) The role of geochemical self‐organization in the migration and trapping hydrocarbons. Appl. Geochem.3, 287–316.
    [Google Scholar]
  16. Dorobek, S. (1989) Migration of orogenic fluids through the Siluro‐Devonian Helderberg Group during late Palaeozoic deformation: Constraints on fluid sources and implication for thermal histories of sedimentary basins. Tectonophys.159, 22–45.
    [Google Scholar]
  17. Falvey, D. A. & Deighton, I. (1982) Recent advances in burial and thermal geohistory analysis. J. Aust. Petrol. Expl. Soc.22, 65–81.
    [Google Scholar]
  18. Gallagher, K. & Lambeck, K. (1989) Subsidence, sedimentation and sea‐level changes in the Eromanga Basin, Australia, Basin Research, 2, 115–131.
    [Google Scholar]
  19. Gibson, R. E. (1958) The progress of consolidation in a clay layer increasing in thickness with timeGiotechnique8, 171–182.
    [Google Scholar]
  20. Goldsmith, I. R. & King, P. (1987) Hydrodynamic modelling of cementation patterns in modern reefs. In: Diagenesis of Sedimentary Sequences (Ed. by J. D.Marshall). Spec. Publ. geol. Soc. Lond.36, 1–13.
    [Google Scholar]
  21. Hegarty, K. A., Weissel, J. K. & Mutter, J. C. (1988) Subsidence history of Australia's southern margin: constraints on basin models. Butt. Am. Ass. Petrol Ceol.72, 615–633.
    [Google Scholar]
  22. Heidlauf, D. T., Hsui, A. T. & Klein, G. (1986) Tectonic subsidence analysis of the Illinois Basin. J. Geol.94, 779–794.
    [Google Scholar]
  23. Houseknecht, D. W. (1987) Assessing the relative importance of compaction processes and cementation to reduction of porosity in sandstones. Bull. Am. Ass. Petrol Geol.71, 633–642.
    [Google Scholar]
  24. Issler, D. R. & Beaumont, C. (1988) A finite element model of subsidence and thermal evolution of extensional basins: application to the Labrador continental margin. In: Thermal History of Sedimentary Basins (Ed. by N. D.Naeser & T. H.McCulloh ), pp. 239–267. Springer‐Verlag, New York .
    [Google Scholar]
  25. Kooi, H. & Cloetingh, S. (1989) Intraplate stresses and the tectono‐stratigraphic evolution of the central North Sea. In: Extensional Tectonics and Stratigraphy of the North Atlantic Margins. (Ed. by A.Tankard & H.Balkwill). Mem. Am. Ass. Petrol Geol. 46.
    [Google Scholar]
  26. Korvin, G. (1984) Shale compaction and statistical physics. Geophys.J. R. astr. Soc.28, 35–50.
    [Google Scholar]
  27. Leder, F. & Park, W. C. (1986) Porosity reduction in sandstone by quartz overgrowth. Bull. Am. Ass. Petrol Geol.70, 1713–1728.
    [Google Scholar]
  28. Lichtner, P. C. (1988) The quasi‐stationary state approximation to coupled mass transport and fluid‐rock interaction in a porous medium. Geochim. Cosmochim. Acta.52, 143–165.
    [Google Scholar]
  29. Liewig, N., Clauer, N. & Sommer, F. (1987) Rb‐Sr and K‐Ar dating of clay diagenesis in Jurassic sandstone oil reservoir, North Sea. Bull. Am. Ass. Petrol Geol.71, 1467–1474.
    [Google Scholar]
  30. Longstaffe, F.J. & Ayalon, A. (1987) Oxygen‐isotope studies of clastic diagenesis in the Lower Cretaceous Viking Formation, Alberta: implications for the role of meteoric water. In: Diagenesis of Sedimentary Sequences (Ed. by J. D.Marshall). Spec. Publ. geol. Soc. Lond.36, 277–296.
    [Google Scholar]
  31. Lucazeau, F. & Le Douaran, S. (1985) The blanketing effect of sediments in basins formed by extension: a numerical model. Application to the Gulf of Lion and Viking Graben. Earth Planet. Sci. Lett.74, 92–102.
    [Google Scholar]
  32. Magara, K. (1980) Comparison of porosity/depth relationships of shale and sandstone. J. Petrol. Geol.3, 175–185.
    [Google Scholar]
  33. Marshall, J. D. (ED.) (1987) Diagenesis of sedimentary sequences. Spec. Publ. geol. Soc. Lond.36.
    [Google Scholar]
  34. McBride, E. F. (1979) Diagenesis of sandstone: cement‐porosity relationships. Soc. Econ. Paleont. Miner, Tulsa, reprint series 9.
  35. McDonald, D. A.
    & Surdam, R. G. (eds) (1984) Clastic Diagenesis. Mem. Am. Ass. Petrol Geol. 37.
    [Google Scholar]
  36. McKenzie, D. P. (1978) Some remarks on the development of sedimentary basins. Earth Planet. Sci. Lett.40, 25–32.
    [Google Scholar]
  37. McLimans, R. K. (1987). The application of fluid incision to migration of oil and diagenesis in petroleum reservoirs. Appl. Geochem.2, 585–603.
    [Google Scholar]
  38. Middleton, M. F. (1978) The genesis of the Cooper and Eromanga Basins. PhD thesis, University of Sydney, 245 pp.
  39. Moore, C. H. (1989) Carbonate diagenesis and porosity. Developments in sedimentology46, Elsevier Holland , 338 pp.
    [Google Scholar]
  40. Nagtegaal, P.J. G. (1978) Sandstone framework instability as a function of burial diagenesis. J. geol. Soc. Lond.135, 101–105.
    [Google Scholar]
  41. Nunn, J. A. & Sleep, N. H. (1984) Thermal contraction and flexure of intracratonic basins: a three dimensional study of the Michigan Basin. Geophys. J. R. astr. Soc.76, 587–635.
    [Google Scholar]
  42. Palciauskas, V. V. & Domenico, P. A. (1989) Fluid pressures in deforming porous rocks. Water Resour. Res.25, 203–213.
    [Google Scholar]
  43. Parasnis, D. S. (1960) The compaction of sediments and its bearing on some geophysical problems. Geophys.J. R. astr. Soc.5, 1–28.
    [Google Scholar]
  44. Parker, A.
    & Sellwood, B. W. (eds) (1983) Sediment Diagenesis. NATO Advanced Study Institute series C115. Riedel, Dordrecht, 427 pp.
  45. Perrier, R. & Quiblier, J. (1974) Thickness changes in sedimentary layers during compaction history: methods for quantitative evaluation. Bull. Am. Ass. Petrol Geol.58, 507–520.
    [Google Scholar]
  46. Rieke, H. R.
    & Chilingarian, G. V. (eds) (1974) Compaction of Argillaceous Sediments. Developments in sedimentology16. Elsevier, Holland , 424 pp.
    [Google Scholar]
  47. Royden, L. & Keen, G E. (1980) Rifting process and thermal evolution of the continental margin of eastern Canada determined from subsidence curves. Earth Planet. Sci. Lett.51, 343–361.
    [Google Scholar]
  48. Saigal, G. G. & Bjørlykke, K. (1987) Carbonate cements in clastic reservoir rocks from offshore Norway–relationships between isotopic composition, textural development and burial depth. In: Diagenesis of Sedimentary Sequences (Ed. by J. D.Marshall). Spec. Publ. geol. Soc. Lond.36, 313–324.
    [Google Scholar]
  49. Scherer, M. (1987) Parameters influencing porosity in sandstones: A model for sandstone porosity prediction. Bull. Am: Ass. Petrol Geol.71, 485–491.
    [Google Scholar]
  50. Schmoker, J. W. & Halley, R. B. (1982) Carbonate porosity versus depth: A predictable relationship for south Florida. Bull. Am. Ass. Petrol Geol.66, 2561–2570.
    [Google Scholar]
  51. Schmoker, J. W. & Gautier, D. L. (1989) Compaction of basin sediments: modeling based on time‐temperature history. J. geophys. Res.94, 7369–7386.
    [Google Scholar]
  52. Schwab, F. L. (1976) Modern and ancient sedimentary basins: comparative accumulation rates. Geology4, 723–727.
    [Google Scholar]
  53. Sclater, J. G. & Christie, P. A. F. (1980) Continental stretching: an explanation of post mid‐Cretaceous subsidence of the central North Sea. J. geophys.Res.85, 3711–3739.
    [Google Scholar]
  54. Selley, R. C. (1978) Porosity gradients in the North Sea oil‐bearing sandstones. J. Geol. Soc. Land.135, 119–132.
    [Google Scholar]
  55. Shi, Y. & Wang, C‐Y. (1986) Pore pressure gradient in sedimentary basins: overloading versus aquathermal. J. geophys. Res.91, 2153–2162.
    [Google Scholar]
  56. Siebert, R. M., Moncure, G. K. & Lahann, R. W. (1984) A theory of framework grain dissolution in sandstones. In: Clastic Diagenesis (Ed. by D. A.McDonald & R. C.Surdam). Mem. Am. Ass. Petrol Geol.37, 163–175.
    [Google Scholar]
  57. Sleep, N. H. (1971) Thermal effects of the formation of Atlantic continental margins by continental break‐up. Geophys. J. R. astr. Soc.24, 325–350.
    [Google Scholar]
  58. Stam, B., Gradstein, F. M., Lloyd, P. & Gillis, D. (1987) Algorithms for porosity and subsidence history. Computers and Geosciences13, 317–349.
    [Google Scholar]
  59. Steckler, M. S. & Watts, A. B. (1978) Subsidence of the Atlantic‐type continental margin off New York. Earth Planet. Sri. Lett, 41, 1–13.
    [Google Scholar]
  60. Surdam, R., Boese, S. W. & Crossey, L. J. (1984) The chemistry of secondary porosity In: Clastic Diagenesis (Ed. by D. A.McDonald & R. C.Surdam). Mem. Am. Ass. Petrol Geol.37, 127–149.
    [Google Scholar]
  61. Thorne, J. A. & Watts, A. B. (1989) Quantitative analysis of North Sea subsidence. Bull. Am. Ass. Petrol Geol.73, 88–116.
    [Google Scholar]
  62. Taylor, J. C. M. (1978) Sandstone diagenesis, state of the art, 1977J. geol. Soc. Land.135, 3–5.
    [Google Scholar]
  63. Tipper, J. C. (1987) Estimating stratigraphic completeness. J. Geol., 95, 710–715.
    [Google Scholar]
  64. Van Hinte, J. E. (1978) Geohistory analysis‐application of micropalaeontology in exploration geology. Bull. Am. Ass. Petrol Geol.62, 291–222.
    [Google Scholar]
  65. Walsh, M. P., Bryant, S. L., Schechter, R. S. & Lake, L. W. (1984) Precipitation and dissolution of solids attending flow through porous media. J. Am. Inst. Chem Eng.30, 317–328.
    [Google Scholar]
  66. Warren, E. A. (1987) The application of a solution‐mineral equilibrium model to the diagenesis of Carboniferous sandstones, Bothamsall oilfield, East Midlands, England. In: Diagenesis of Sedimentary Sequences (Ed. by J. D.Marshall). Spec. Publ. Geol. Soc. Lond36, 55–69.
    [Google Scholar]
  67. Watts, A. B. & Ryan, W. B. F. (1976) Flexure of the lithosphere and continental margin basins. Tectonophys.36, 25–44.
    [Google Scholar]
  68. Watts, A. B. & Steckler, M. S. (1979) Subsidence and eustasy at the continental margin of eastern North America. Am. geophys. Un., Maurice Ewing series3, 218–234.
    [Google Scholar]
  69. Watts, A. B. & Steckler, M. S. (1981) Subsidence and tectonics of Atlantic‐type continental margins. Oceanologica Acta4 (suppl. no. SP), 143–153.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.1989.tb00029.x
Loading
  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error