1887
Volume 14 Number 4
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

A thrust wedge with unusual geometry has developed under very oblique (50–60°) convergence between the Pacific and Australian Plates, along the 240‐km length of the Fiordland margin, New Zealand. The narrow (25 km‐wide) wedge comprises three overlapping components, lying west of the offshore section of the Alpine Fault, and straddles a change of > 30° in the regional strike of the plate boundary. Swath bathymetry, marine seismic reflection profiles, and dated samples together reveal the stratigraphy, structure, and evolution of the wedge and the underthrusting, continental, Caswell High (Australian Plate).

 Lateral variations in the composition and structure of the accretionary wedge, and the depth of the décollement thrust, result partly from variations in crustal structure and basement relief of the underthrust plate, and from associated variations in the thickness of turbidites available for frontal accretion. In the southern Fiordland Basin the underthrust plate is undergoing flexural uplift and extension, and a thick turbidite section is available for accretion. Along‐strike, a structurally elevated portion of the underthrust plate is very obliquely colliding with the central part of the accretionary wedge, the turbidite section available for accretion is condensed, and structural inversion occurs in the underthrust plate.

  Growth of the thrust wedge is inferred to have commenced in the Pliocene prior to 3 ± 1 Ma, but much of the wedge developed in the Quaternary. The spatial distribution of thrusting has varied through time, with most late Quaternary shortening occurring on structures within 10 km of the right‐stepping deformation front. Estimates of the magnitude and rates of deformation indicate that the wedge accommodates a significant component of the oblique convergence between the Pacific and Australian Plates. Shortening of up to 7.3 ± 1.4 km and 9.1 ± 1.8 km within the southern and central parts of the wedge, respectively, represent about 5–15% of the total 70–140 km of shortening predicted across the plate boundary since 6.4 Ma, and about 10–30% since 3 Ma. Late Quaternary shortening rates of the order of 1–5 mm yr−1, estimated across both the northern and southern parts of the wedge, represent about 10–50 and 5–21% of the total NUVEL‐1 A shortening across the plate boundary at these respective latitudes, implying that most shortening is occurring onshore. Furthermore, possible oblique‐slip thrusting within the wedge may be accommodating boundary‐parallel displacement of 0–6 mm yr−1, representing 0–17% of the total predicted within the plate boundary.

Loading

Article metrics loading...

/content/journals/10.1046/j.1365-2117.2002.00178.x
2002-12-09
2024-04-19
Loading full text...

Full text loading...

References

  1. Anderson, H. & Webb, T. (1994) New Zealand seismicity: patterns revealed by the upgraded National Seismograph Network. NZ. J. Geol. Geophys., 37, 477–493.
    [Google Scholar]
  2. Anderson, H., Webb, T. & Jackson, J. (1993) Focal mechanisms of large earthquakes in the South Island, New Zealand; implications for the accommodation of Pacific–Australia plate motion. Geophys. J. Int., 125, 1032–1054.
    [Google Scholar]
  3. Barnes, P.M. & Audru, J.‐C. (1999) Quaternary faulting in the offshore Flaxbourne and southern Wairarapa basins, southern Cook Strait, New Zealand. NZ. J. Geol. Geophys., 42, 349–367.
    [Google Scholar]
  4. Barnes, P.M. & Mercier de LE´pinay, B. (1997) Rates and mechanics of rapid frontal accretion along the very obliquely convergent southern Hikurangi margin, New Zealand. J. Geophys. Res., 102, 24, 931–24, 952.
    [Google Scholar]
  5. Barnes, P.M., Mercier de LE´pinay, B., Collot, J.‐Y., Delteil, J. & Audru, J.‐C. (1998) Strain partitioning in the transition area between oblique subduction and continental collision, Hikurangi margin, New Zealand. Tectonics, 17, 534–557.
    [Google Scholar]
  6. Barnes, P.M., Sutherland, R., Davy, B. & Delteil, J. (2001) Rapid creation and destruction of sedimentary basins on mature strike‐slip faults: an example from the offshore Alpine Fault, New Zealand. J. Struct. Geol., 23, 1727–1739.
    [Google Scholar]
  7. Beaumont, C., Kamp, P.J.J., Hamilton, J. & Fullsack, P. (1996) The continental collision zone, South Island, New Zealand: comparisons of geodynamic models and observations. J. Geophys. Res., 101, 3333–3359.
    [Google Scholar]
  8. Berryman, K.R., Beanland, S., Cooper, A.F., Cutten, H.N., Norris, R.J. & Wood, P.R. (1992) The Alpine Fault, New Zealand: variation in Quaternary structural style and geomorphic expression. Annales. Tectonicæ, VI, 126–163.
    [Google Scholar]
  9. Boyer, S. & Elliot, D. (1982) Thrust systems. Am. Assoc. Petrol. Geol. Bull., 66, 1196–1230.
    [Google Scholar]
  10. Christoffel, D.A. & Van Der Linden, W.J. (1972) Macquarie Ridge–New Zealand Alpine Fault transition. In: Antarctic Oceanology II, the Australian‐New Zealand Sector, Antartctic Research Series, 19 (Ed. by D. E.Hayes ), pp. 235–242. American Geophysical Union, Washington D.C.
    [Google Scholar]
  11. Collot, J.‐Y. & Davy, B. (1998) Forearc structures and tectonic regimes at the oblique subduction zone between the Hikurangi Plateau and the southern Kermadec margin. J. Geophys. Res., 103, 623–650.
    [Google Scholar]
  12. Collot, J.‐Y., Delteil, J., Herzer, R.H., Wood, R. & Lewis, K.B. & Shipboard Party (1994) Sonic imaging reveals new plate boundary structures offshore New Zealand. Eos Trans., 76, 1–5.
    [Google Scholar]
  13. Collot, J.‐Y., Lamarche, G., Wood, R., Delteil, J., Sosson, M., Lebrun, J.‐F. & Coffin, M. (1995) Morphostructure of an incipient subduction zone along a transform plate boundary: Puysegur Ridge and Trench. Geology, 23, 519–522.
    [Google Scholar]
  14. Curray, J.R. (1989) The Sunda arc: a model for oblique plate convergence. Neth. J. Sea Res., 24, 131–140.
    [Google Scholar]
  15. Davey, F.J., Hampton, M., Childs, J., Fisher, M.A., Lewis, K.B. & Pettinga, J.R. (1986) Structure of a growing accretionary prism, Hikurangi margin, New Zealand. Geology, 14, 663–666.
    [Google Scholar]
  16. Davey, F.J. & Smith, E.G.C. (1983) The tectonic setting of the Fiordland region, southwest New Zealand. Geophys. J. Roy. Astron. Soc., 72, 23–38.
    [Google Scholar]
  17. Delteil, J., Collot, J.‐Y., Wood, R., Herzer, R.H., Calmant, S., Christoffel, D., Coffin, M., Ferriere, J., Lamarche, G., Lebrun, J.‐F., Mauffret, A., Pontoise, B., Popoff, M., Ruellan, E., Sosson, M. & Sutherland, R. (1996a) From strike‐slip faulting to oblique subduction: a survey of the Alpine Fault–Puysegur Trench transition, New Zealand, Results of Cruise GeodyNZ‐sud Leg 2. Mar. Geophys. Res., 18, 383–399.
    [Google Scholar]
  18. Delteil, J., Herzer, R.H., Sosson, M., Lebrun, J.‐F., Collot, J.‐Y. & Wood, R.A. (1996b) Influence of pre‐existing backstop structure on oblique tectonic accretion: The Fiordland margin (southwestern New Zealand). Geology, 24, 1045–1048.
    [Google Scholar]
  19. Demets, C., Gordon, R.G., Argus, D.F. & Stein, S. (1994) Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophys. Res. Lett., 21, 2191–2194.
    [Google Scholar]
  20. Dolan, J.F., Mullins, H.T. & Wald, D.J. (1998) Active tectonics of the north‐central Caribbean: oblique collision, strain partitioning, and opposing subducted slabs. In: Active Strike‐Slip and Collisional Tectonics of the North Caribbean Plate Boundary Zone (Ed. by J. F.Dolan & P.Mann ). Boulder, Colorado. Geol. Soc. Am. Spec. pap. 326, 1–61.
    [Google Scholar]
  21. Dominguez, S., Lallemand, S., Malavielle, J. & Schnurle, P. (1998) Oblique subduction of the Gagua Ridge beneath the Ryukyu accretionary wedge system: insights from marine observations and sandbox experiments. Mar. Geophys. Res., 20, 383–402.
    [Google Scholar]
  22. Eberhart‐Phillips, D. & Reyners, M. (2001) A complex, young subduction zone imaged by three dimensional seismic velocity, Fiordland, New Zealand. Geophys. J. Int., 146, 731–746.
    [Google Scholar]
  23. Fitch, T.J. (1972) Plate convergence, transcurrent faults and internal deformation adjacent to southeast Asia and the Western Pacific. J. Geophys. Res., 77, 4432–4460.
    [Google Scholar]
  24. Fruehn, J., Von Huene, R. & Fisher, M.A. (1999) Accretion in the wake of terrane collision: the Neogene accretionary wedge off Kenai Peninsula, Alaska. Tectonics, 18, 263–277.
    [Google Scholar]
  25. Garlick, R.D., Mitchell, J.S. & Saunders, H.A. (2000) Milford Bathymetry. NIWA Chart, Coastal Series, 1:200 000.National Institute of Water and Atmospheric Research Ltd, Wellington, New Zealand.
    [Google Scholar]
  26. Hinz, K., Von Huene, R. & Ranero, C.R. (1996) Tectonic structure of the convergent Pacific margin offshore Costa Rica from multichannel seismic reflection data. Tectonics, 15, 54–66.
    [Google Scholar]
  27. Huchon, P., Lyberis, N., Angelier, J., Le Pichon, X. & Renard, V. (1982) Tectonics of the Hellenic trench: a synthesis of sea‐beam and submersible observations. Tectonophysics, 86, 69–112.
    [Google Scholar]
  28. Von Huene, R. & Klaeschen, D. (1999) Opposing gradients of permanent strain in the aseismic zone and elastic strain across the seismogenic zone of the Kodiak shelf and slope, Alaska. Tectonics, 18, 248–262.
    [Google Scholar]
  29. Von Huene, R. & Lallemand, S.E. (1990) Tectonic erosion along the Japan and peru convergent margins. Geol. Soc. Am. Bull., 102, 704–720.
    [Google Scholar]
  30. Von Huene, R. & Scholl, D.W. (1991) Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Rev. Geophys., 29, 279–316.
    [Google Scholar]
  31. Kamp, P.J. & Hegarty, K.A. (1989) Multigenetic gravity couple across a modern convergent margin: inheritance from Cretaceous asymmetric extension. Geophys. J. R. Astron. Soc., 96, 33–41.
    [Google Scholar]
  32. Karig, D.E., Moore, G.F., Curray, J.R. & Lawrence, M.B. (1980) Morphology and shallow structure of the lower trench slope off Nias Island, Sunda Arc. In: The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands (Ed. by D. E.Hayes ). AGU, Washington, D. C., Geophys. Monogr. Ser., 23, 179–208.
    [Google Scholar]
  33. Koons, P.O. (1994) Three dimensional critical wedges: tectonics and topography in oblique collisional orogens. J. Geophys. Res., 99, 12, 301–12, 315.
    [Google Scholar]
  34. Lallemand, S., Schnurle, P. & Malavieille, J. (1994) Coulomb theory applied to accretionary and nonaccretionary wedges: possible causes for tectonic erosion and/or frontal accretion. J. Geophys. Res., 99, 12033–12055.
    [Google Scholar]
  35. Lamarche, G., Collot, J.‐Y., Wood, R.A., Sosson, M., Sutherland, R. & Delteil, J. (1997) The Oligocene–Miocene Pacific–Australian plate boundary, south of New Zealand: evolution from oceanic spreading to strike‐slip faulting. Earth Planet. Sci. Lett., 148, 129–139.
    [Google Scholar]
  36. Lamarche, G. & Lebrun, J.‐F. (2000) Transition from strike‐slip faulting to oblique subduction: active tectonics at the Puysegur Margin, south New Zealand. Tectonophysics, 316, 67–89.
    [Google Scholar]
  37. Lebrun, J.‐F. (1997) From the Alpine Fault to the Macquarie Ridge complex, development of the Puysegur subduction, southwest New Zealand. PhD Thesis, University of Paris VI, France.
  38. Lebrun, J.‐F., Lamarche, G. & Collot, J.‐Y.Subduction initiation at a strike–slip plate boundary: the Cenozoic Pacific–Australian Plate Boundary, South of NZ. J. Geophys. Res. (in press).
    [Google Scholar]
  39. Lebrun, J.‐F., Lamarche, G., Collot, J.‐Y. & Delteil, J. (2000) Abrupt strike‐slip fault to subduction transition: the Alpine Fault–Puysegur trench connection, New Zealand. Tectonics., 19, 688–706.
    [Google Scholar]
  40. Lewis, K.B. & Barnes, P.M. (1999) Kaikoura Canyon, New Zealand; active conduit from near‐shore sediment zones to a trench‐axis channel. Mar. Geol., 162, 39–69.
    [Google Scholar]
  41. Lewis, K.B. & Pettinga, J.R. (1993) The emerging, imbricated frontal wedge of the Hikurangi margin. In: South Pacific Sedimentary Basins (Ed. by P. F.Balance ), Sedimentary basins of the world, 2, pp. 225–250. Elsevier Science, New York.
    [Google Scholar]
  42. MacKay, M.E. & Moore, G.F. (1990) Variation in deformation of the south Panama accretionary prism: response to oblique subduction and trench sediment variation. Tectonics, 9, 683–698.
    [Google Scholar]
  43. Martinez, A., Malavieille, J., Lallemand, S. & Collot, J.‐Y. (2002) Partition de la déformation dans un prisme d'accretion sédimantaire: approche expérimentale. Bull. Geol. Soc. France., 173, 17–24.
    [Google Scholar]
  44. McCaffrey, R. (1992) Oblique plate convergence, slip vectors, and forearc deformation. J. Geophys. Res., 97, 8905–8915.
    [Google Scholar]
  45. Melhuish, A., Sutherland, S., Davey, F.J. & Lamarche, G. (2000) Crustal structure and neotectonics of the Puysegur oblique subduction zone, New Zealand. Tectonophysics., 313, 335–362.
    [Google Scholar]
  46. Melservisi, R. (2002) Numerical Models of the Dynamics of Complex Plate Boundary Deformations. PhD Thesis, Penn State University, USA.
  47. Mitra, S. (1986) Duplex structurtes and imbricate thrust systems: geometry, structural position, and hydrocarbon potential. Am. Assoc. Petrol. Geol. Bull., 70, 1087–1112.
    [Google Scholar]
  48. Moore, J.C. & Lundberg, N. (1986) Tectonic overview of Deep Sea Drilling Project transects of forearcs. In: Structural Fabrics in Deep Sea Drilling Project Cores (Ed. by J. C.Moore ). Mem. Geol. Soc. Am., 166, 1–12.
    [Google Scholar]
  49. Moore, G.F. & Shipley, T.H. (1988) Mechanisms of sediment accretion in the middle America trench off Mexico. J. Geophys. Res., 93, 8911–8927.
    [Google Scholar]
  50. Moore, G.F., Shipley, T.H., Stoffa, P.L., Karig, D.E., Taira, A., Kuramoto, S., Tokuyama, H. & Suyehiro, K. (1990) Structure of the Nankai Trough accretionary zone from multichannel seismic reflection data. J. Geophys. Res., 95, 8753–8765.
    [Google Scholar]
  51. Morgan, J.K. & Karig, D.E. (1995) Decollement processes at the Nankai accretionary margin, southeast Japan: propagation, deformation, and dewatering. J. Geophys. Res., 100, 15221–15231.
    [Google Scholar]
  52. Naish, T.R., Carter, R.M. & Pillans, B.J. (1999) High resolution chronology for the Plio‐Pleistocene, Wanganui Basin, New Zealand. In: The High Resolution, Chronostratigraphic and Sequence Stratigraphic Record of the Plio‐Pleistocene, Wanganui Basin, New Zealand (Ed. by R. M.Carter & T. R.Naish ). Institute of Geological and Nuclear Sciences folio series 2, version 1999. Institute of Geological and Nuclear Sciences Ltd., 1 Lower Hutt, New Zealand.
    [Google Scholar]
  53. Nathan, S. (1978) Upper Cenozoic stratigraphy of South Westland, New Zealand. NZ. J. Geol. Geophys., 21, 329–361.
    [Google Scholar]
  54. Norris, R.J., Carter, R.M. & Turnbull, I.M. (1978) Cainozoic sedimentation in basins adjacent to a major continental transform boundary in southern New Zealand. J. Geol. Soc. London, 135, 191–205.
    [Google Scholar]
  55. Norris, R.J., Koons, P.O. & Cooper, A.F. (1990) The obliquely–convergent plate boundary in the South Island of New Zealand: implications for ancient collision zones. J. Struct. Geol., 12, 715–725.
    [Google Scholar]
  56. Norris, R.J. & Turnbull, I.M. (1993) Cenozoic basins adjacent to an evolving transform plate boundary, southwest New Zealand. In: South Pacific Sedimentary Basins (Ed. by P. F.Balance ), Sedimentary basins of the world, 2, pp. 251–270. Elsevier Science, New York.
    [Google Scholar]
  57. Pearson, C. (1992) Strain measurements in the northern Waiau Basin, New Zealand J. Geol. Geophys., 35, 375–379.
    [Google Scholar]
  58. Pinet, N. & Cobbold, P.R. (1992) Experimental insights into the partitioning of motion within zones of oblique subduction. Tectonophysics, 206, 371–388.
    [Google Scholar]
  59. Platt, J.P. (1993) Mechanics of oblique convergence. J. Geophys. Res., 98, 16, 239–16, 256.
    [Google Scholar]
  60. Reyners, M., Gledhill, K. & Waters, D. (1991) Tearing of the subducted Australian Plate during the Te Anau, New Zealand, earthquake of 1988 June 3. Geophys. J. Int., 104, 105–115.
    [Google Scholar]
  61. Reyners, M. & Webb, T. (2002) Large earthquakes near Doubtful Sound, New Zealand, 1989–93. NZ. J. Geol. Geophys., 45, 109–120 .
    [Google Scholar]
  62. Ryan, H.F. & Coleman, P.J. (1992) Composite transform‐convergent plate boundaries: description and discussion. Mar. Petrol. Geol., 9, 89–97.
    [Google Scholar]
  63. Ryan, H.F. & Scholl, D.W. (1989) The evolution of forearc structures along an oblique convergent margin, central Aleutian arc. Tectonics, 8, 497–516.
    [Google Scholar]
  64. Schurr, C.L., Coffin, M.F., Frolich, C., Mann, P., Massell, C.G., Karner, G.D., Ramsay, D. & Caress, D.W. (1998) Sedimentary regimes at the Macquarrie Ridge Complex: Interaction of Southern Ocean circulation and plate boundary bathymetry. Paleoceanography, 13, 646–670 .
    [Google Scholar]
  65. Shipley, T.H. & Moore, G.F. (1986) Sediment accretion, subduction, and dewatering at the base of the trench slope off Costa Rica: a seismic reflection view of the décollement. J. Geophys. Res., 91, 2019–2028.
    [Google Scholar]
  66. Smith, E.G.C. & Davey, F.J. (1984) Joint hypocentre determinations of intermediate depth earthquakes in Fiordland region, New Zealand. Tectonophysics, 104, 127–144.
    [Google Scholar]
  67. Sutherland, R. (1994) Displacement since the Pliocene along the southern section of the Alpine Fault, New Zealand. Geology, 22, 237–330.
    [Google Scholar]
  68. Sutherland, R. (1995) The Australian–Pacific boundary and Cenozoic plate motion in the SW Pacific: some constraints from Geosat data. Tectonics, 14, 819–831.
    [Google Scholar]
  69. Sutherland, R., Davey, F. & Beavan, J. (2000) Plate boundary deformation in South Island, New Zealand, is related to inherited lithospheric structure. Earth Planet. Sci. Lett., 177, 141–151.
    [Google Scholar]
  70. Sutherland, R. & Norris, R.J. (1995) Late Quaternary displacement rate, paleoseismicity, and geomorphic evolution of the Alpine fault: evidence from Hokuri Creek, South Westland. NZ J. Geol. Geophys., 38, 419–430.
    [Google Scholar]
  71. Walcott, R.I. (1978) Present tectonics and late Cenozoic evolution of New Zealand. Geophys. J. R. Astron. Soc., 52, 137–164.
    [Google Scholar]
  72. Walcott, R.I. (1998) Modes of oblique compression: late Cenozoic tectonics of the South Island of New Zealand. Rev. Geophys., 36, 1–26.
    [Google Scholar]
  73. Weissel, J.K., Hayes, D.E. & Herron, E.M. (1977) Plate tectonic synthesis: the displacements between Australia, New Zealand, and Antarctica since the Late Cretaceous. Mar. Geol., 25, 231–277.
    [Google Scholar]
  74. Westbrook, G.K., Mascle, A. & Biju‐Duval, B. (1984) Geophysics and the structure of the Lesser Antilles forearc. Initial Report Deep Sea Drill. Proj., 78A, 23–38.
    [Google Scholar]
  75. Wood, R., Herzer, R., Sutherland, R. & Melhuish, A. (2000) Cretaceous‐Tertiary tectonic history of the Fiordland Margin, New Zealand. NZ. J. Geol. Geophys., 43, 289–302.
    [Google Scholar]
  76. Wood, R.A., Lamarche, G., Herzer, R.H., Delteil, J. & Davy, B. (1996) Paleogene seafloor spreading in the southeast Tasman Sea. Tectonics, 15, 966–975.
    [Google Scholar]
  77. Yeats, R.S. (1987) Tectonic map of central Otago based on satellite imagery, NZ. J. Geol. Geophys., 30, 261–271.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1046/j.1365-2117.2002.00178.x
Loading
/content/journals/10.1046/j.1365-2117.2002.00178.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error