1887
Volume 13 Number 3
  • E-ISSN: 1365-2117

Abstract

Tectonic subsidence in the 20–9 Ma Bermejo basin resulted from spatially variable crustal loading on a lithosphere of spatially variable strength (e.g. elastic thickness). Reconstruction of the crustal loads added between 20 and 9 Ma, and assessment of the effects of these loads on an elastic, isotropic lithosphere confirm this hypothesis. Elastic models effectively explain tectonic subsidence east of the Iglesia–Calingasta basin, but west of it crustal loads were locally compensated. Elastic models also prove that the 20–9 Ma Frontal Cordillera loading is of no importance in the mechanical system of the Bermejo basin. 2D and 3D elastic models of a uniformly strong lithosphere under 20–9 Ma crustal loads corrected for post‐9 Ma erosion successfully replicate the 9 Ma Bermejo basin's proximal palaeotopography. However, they fail to replicate the 9 Ma basin's medial and distal palaeotopography. A 3D finite element model of a lithosphere with bimodal strength (weak below the Bermejo basin and west of the Precordillera, and strong below the Precordillera and east of the Valle Fértil lineament) successfully replicates the 9 Ma basin's palaeotopography. That variable strength model introduces a southward decrease in the wavelength of flexural deformation, which results in a basin that narrows southward, consistent with the 9 Ma Bermejo basin. The preferred 9 Ma lithospheric strength distribution is similar to the present lithospheric strength field derived from gravity data, suggesting that the bimodal strength signature was retained throughout the entire basin's evolution. Late Miocene flattening of the subducting slab, tectonic change to a broken foreland, or deposition of a thick (∼8–10 km) sedimentary cover did not affect the strength of the lithosphere underlying the Bermejo basin. The long‐term bimodal strength field does not correlate with the documented thickness of the seismogenic crust.

Loading

Article metrics loading...

/content/journals/10.1046/j.0950-091x.2001.00154.x
2002-01-12
2024-03-29
Loading full text...

Full text loading...

References

  1. Allmendinger, R.W., Figueroa, D., Snyder, D., Beer, J., Mpodozis, C., Isacks, B.L. (1990) Foreland shortening and crustal balancing in the Andes at 30°S Latitude. Tectonics, 9, 789–809.
    [Google Scholar]
  2. Astini, R.A. (1991) Paleoambientes sedimentarios y secuencias depositacionales del Ordovicico clastico de la Precordillera Argentina . PhD Thesis, Universidad Nacional de Cordoba.
  3. Baraldo, J.A. (1985) Estructura de un sector de la Precordillera nororiental Sanjuanina, Dpto, Jáchal, San Juan. Primeras Jornadas Sobre Geologia Precordillera, Acta I, 209–214.
  4. Beaumont, C. (1981) Foreland basins. Geophys. J. Royal Astronom. Soc., 65, 291–329.
    [Google Scholar]
  5. Beer, J.A. (1990) Steady sedimentation and lithologic completeness, Bermejo basin, Argentina. J. Geol., 98, 501–518.
    [Google Scholar]
  6. Beer, J.A., Allmendinger, R.W., Figueroa, D.E., Jordan, T.E. (1990) Seismic stratigraphy of a Neogene Piggyback Basin, Argentina. AAPG Bull., 74, 1183–1202.
    [Google Scholar]
  7. Beer, J.A. & Jordan, T.E. (1989) The effects of Neogene thrusting on deposition in the Bermejo Basin, Argentina. J. Sedimen. Petrol., 59, 330–345.
    [Google Scholar]
  8. Bercowski, F., Berenstein, L.R., Johnson, N.M. (1987) Litofacies y paleoambiente del Terciario en Loma de Las Tapias, Ullum, Provincia de San Juan, Argentina. X Congreso Geológico Argentino, Tucumán, 2, 101–104.
    [Google Scholar]
  9. Bercowski, F., Berenstein, L.R., Johnson, N.M., Naeser, C.W. (1986) Sedimentología, magnetoestratigrafía y edad isotópica del Terciario en Loma de las Tapias, Ullum, Provincia de San Juan. Primera Reunión Sedimentológica Argentina, Plata, Actas, 169–172.
  10. Bercowski, F. & Figueroa, G.J. (1989) Depósitos piroclastásticos en la Formación Albarracín, Terciario, Precordillera Sanjuanina. Asociación Geo. Argentina, Revista, 43, 28–34.
    [Google Scholar]
  11. Bercowski, F., Jordan, T.E., Zeitler, P., Caballero, M.M., Pérez, I., Carrizo, C. (1994) Correlaciones estratigráficas en el neozoico de Precordillera central, San Juan, Argentina. 7th Congreso Geológico Chileno, 1, 404–408.
    [Google Scholar]
  12. Brooks, B.A. (1999) Fault spacing in the El Teniente Mine, central Chile; the fold style inversion method; fold segmentation and fault linkage of the Barrancas/Lunlunta‐Carrizal anticlinal complex, Mendoza, Argentina. Cornell University, Ithaca, NY, USA.
    [Google Scholar]
  13. Caminos, R., Fauque, L., Cingolani, C., Varela, R., Morel, E. (1993) Estratigrafía y estructura del Devonico‐Carbonifero en el sector septentrional de la Sierra de la Punilla, Precordillera de La Rioja y San Juan. XII Congreso Geológico Argentino Y II Congreso Exploración Hidrocarburos, 2, 31–41.
    [Google Scholar]
  14. Cevallos, M. & Milana, J.P. (1992) Sedimentología de un desierto eólico terciario (San Juan, Argentine). IV Reunión Argentina Sedmentología, 3, 121–128.
    [Google Scholar]
  15. Clark, M.K. & Royden, L.H. (2000) Topographic ooze; building the eastern margin of Tibet by lower crustal flow. Geology, 28, 703–706.
    [Google Scholar]
  16. Coughlin, T.J., O'Sullivan, P.B., Kohn, B.P., Holcombe, R.J. (1998) Apatite fission‐track thermochronology of the Sierras Pampeanas, central western Argentina: Implications for the mechanism of plateau uplift in the Andes. Geology, 26, 999–1002.
    [Google Scholar]
  17. Cristallini, E.O. & Ramos, V.A. (2000) Thick‐skinned and thin‐skinned thrusting in the La Ramada fold and thrust belt: crustal evolution of the High Andes of San Juan, Argentina (32°SL). Tectonophysics, 317, 205–235.DOI: 10.1016/s0040-1951(99)00276-0
    [Google Scholar]
  18. Damanti, J.F. (1989) Evolution of the Bermejo foreland basin: provenance, drainage development diagenesis. Doctoral Thesis, Cornell University, Ithaca, NY, USA.
  19. Damanti, J.F. & Jordan, T.E. (1989) Cementation and Compaction History of Synorogenic Foreland Basin Sedimentary Rocks from Huaco, Argentina. AAPG Bull., 73, 858–873.
    [Google Scholar]
  20. DeCelles, P.G. & Mitra, G. (1995) History of the Sevier orogenic wedge in terms of critical taper models, northeast Utah and southwest Wyoming. GSA Bull., 107, 454–462.
    [Google Scholar]
  21. Fernández, A.E. (1996) Seismic analysis, paleoclimatology and fluvial architecture of the Bermejo Basin, Central Andes, Western Argentina. Doctoral Thesis, Cornell University, Ithaca, NY, USA.
  22. Fernández, A.E. & Jordan, T.E. (1996) Analysis of controls on foreland basin stratigraphy using seismic and outcrop data: application to the Bermejo basin, central Andes, Argentina. XIII Congreso Geológico Argentino III Congreso Exploración Hidrocarburos, Buenos Aires, 1, 373–384.
    [Google Scholar]
  23. Fernández‐Seveso, F., Perez, M.A., Brisson, I.E., Alvarez, L. (1993) Sequence stratigraphy and tectonic analyisis of the Paganzo basin, Western Argentina. Comptens Rendus XII ICC-P, 2, 223–260.
    [Google Scholar]
  24. Flemings, P.B. & Jordan, T.E. (1989) A synthetic stratigraphic model of foreland basin development. J. Geophys. Res., 94, B3851–B3866.
    [Google Scholar]
  25. Flemings, P.B. & Jordan, T.E. (1990) Stratigraphic modelling of foreland basins: interpreting thrust deformation and lithospheric rheology. Geology, 18, 430–435.
    [Google Scholar]
  26. Flemings, P.B. & Nelson, S.N. (1991) Paleogeographic evolution of the latest Cretaceous and Paleocene Wind River basin. Mountain Geologist, 28, 37–52.
    [Google Scholar]
  27. Furque, G. (1963) Hoja 17b‐Guandacol.Direccion de Geologia y Mineria, Argentina.
    [Google Scholar]
  28. Giménez, M.E. (1997) Estudio genético y evolutivo de la Cuenca del Bermejo (Provincia de San Juan), a partir de datos de gravedad . Doctoral Thesis, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina.
  29. Von Gosen, W. (1992) Structural evolution of the Argentine Precordillera: the Río San juan section. J. Struct. Geol., 14, 643–667.
    [Google Scholar]
  30. Von Gosen, W. (1995) Polyphase structural evolution of the southwestern Argentine Precordillera. J. South Am. Earth Sci., 8, 377–404.
    [Google Scholar]
  31. Von Gosen, W. (1997) Early Paleozoic and Andean structural evolution in the Río Jáchal section of the Argentine Precordillera. J. South Am. Earth Sci., 10, 361–388.
    [Google Scholar]
  32. Hetényi, M. (1946) Beams on Elastic Foundations. Theory with Applications in the Fields of Civil and Mechanical Engineering. The University of Michigan Press.
    [Google Scholar]
  33. Horton, B.K. (1999) Erosional control on thrust belt development in the Bolivian Andes. Fourth International Symposium on Andean Geodynamics, Göttingen, 334.
  34. Huebner, K.H., Thornton, E.A., Byrom, T.G. (1995) The Finite Element Method for Engineers. John Wiley & Sons, Inc.
    [Google Scholar]
  35. Introcaso, A, Pacino, M.G., Fraga, H. (1992) Gravity, isostasy, and Andean crustal shortening between latitudes 30° and 35°S. Tectonophysics, 205, 31–48.
    [Google Scholar]
  36. Johnson, N.M., Jordan, T.E., Johnsson, P.A., Naeser, C.W. (1986) Magnetic polarity stratigraphy, age and tectonic setting of fluvial sediments in the eastern Andean foreland basin, San Juan province, Argentina. In: Foreland Basins (Ed. by P.A. Allen & P. Homewood), Int. Ass. Sedimentol., Spec. Publ., 8, 63–75.
    [Google Scholar]
  37. Johnsson, P.A., Johnson, N.M., Jordan, T.E., Naeser, C.W. (1984) Magnetic polarity stratigraphy and age of the Quebrada del Cura, Río Jáchal, and Mogna Formations near Huaco, San Juan Province, Argentina. IX Congreso Geologico Argentino, 3, 81–96.
    [Google Scholar]
  38. Jordan, T.E. (1981) Thrust loads and foreland basin evolution, Cretaceous, western United States. AAPG Bull., 65, 2506–2520.
    [Google Scholar]
  39. Jordan, T.E. (1995) Retroarc Foreland and Related Basins. In: Tectonics of Sedimentary Basins (Ed. by C.Busby & R.Ingersoll ), pp. 331–362. Blackwell Scientific Publications, Oxford.
    [Google Scholar]
  40. Jordan, T.E. & Allmendinger, R.W. (1986) The Sierra Pampeanas of Argentina: a modern analogue of Rocky Mountain foreland deformation. Am. J. Sci., 286, 737–764.
    [Google Scholar]
  41. Jordan, T.E., Allmendinger, R.W., Damanti, J.F., Drake, R.E. (1993a) Chronology of Motion in a Complete Thrust Belt: the Precordillera. 30–31°S, Andes Mountains. J. Geol., 101, 135–156.
    [Google Scholar]
  42. Jordan, T.E., Drake, R.E., Naeser, C.W. (1993b) Estratigrafía del cenozoico medio en la Precordillera a la latitud del Río Jáchal, San Juán, Argentina. XII Congreso Geológico Argentino Y II Congreso Exploración Hidrocarburos, 2, 132–141.
    [Google Scholar]
  43. Jordan, T.E., Kelley, S., Fernández, A., Ferrnández Seveso, F., Ré, G., Milana, J.P. (1997) Relaciones entre las historias evolutivas de las cuencas de Iglesia y Bermejo, Provincia de San Juan. Argentina. II Jornadas Geología Precordillera, San Juan, Argentina, 142–147.
  44. Jordan, T.E., Rutty, P.M., McRae, L.E., Beer, J.A., Tabbutt, K., Damanti, J.F. (1990) Magnetic polarity stratigraphy of the Miocene Río Azul section, Precordillera thrust belt, San Juan Province, Argentina. J. Geol., 98, 519–539.
    [Google Scholar]
  45. Jordan, T.E., Schlunegger, F., Cardozo, N. (2001) Unsteady and Spatially Variable Evolution of the Neogene Andean Bermejo Foreland Basin, Argentina. J. South Am. Earth Sci., in press.
  46. Kay, S.M., Maksaev, V., Moscoso, R., Mpodozis, C., Nasi, C., Gordillo, C.E. (1988) Tertiary Andean mamatism in Chile and Argentina between 28°S and 33°S: correlation of magmatic chemistry with a changing Benioff zone. J. South Am. Earth Sci., 1, 21–38.
    [Google Scholar]
  47. Lavier, L.L. & Steckler, M.S. (1997) The effect of sedimentary cover on the flexural strength of continental lithosphere. Nature, 389, 476–479.DOI: 10.1038/39004
    [Google Scholar]
  48. Maggi, A., Jackson, J.A., McKenzie, D., Priestley, K. (2000) Earthquake focal depths, effective elastic thickness, and the strength of the continental lithosphere. Geology, 28, 495–498.
    [Google Scholar]
  49. Malizia, D.C., Reynolds, J.H., Tabbutt, K.D. (1995) Chronology of Neogene sedimentation, stratigraphy, and tectonism in the Campo de Talampaya region, La Rioja Province, Argentina. Sediment. Geol., 96, 231–255.
    [Google Scholar]
  50. Malizzia, D.C. & Limeres, M.H. (1984) Estudio de facies de la Formación Quebrada del Médano en el perfil de la quebrada eponima, Provincia de La Rioja. IX Congreso Geológico Argentina (Bariloche), 1, 310–321.
    [Google Scholar]
  51. Martinez, M.P. & Introcaso, A. (1999) La Sierra Pampeana de Valle Fértil, Provincia de San Juan. Análisis Estructural a partir de Datos Gravimétricos . UNR Editora, Universidad Nacional de Rosario.
  52. Milana, J.P. (1990a) Facies y paleohidrología de conglomerados aluviales Plio‐Pleistocenos (San Juan, Argentina): evidencias de fases climáticas en los Andes a los 31°Sur. Segundo Simposio sobre el. Terciario Chile (Concepción), 215–224.
  53. Milana, J.P. (1990b) Secuencias sedimentarias aluviales, subsidence y tectonismo en la cuenca de antepaís andina de la provincia de San Juan, Argentina. Segundo Simposio Sobre El Terciario Chile (Concepción), 205–214.
  54. Milana, J.P. (1991) Sedimentología y magnetoestratigrafía de formaciones cenozoicas en el area de Mogna y su inserción en el marco tectosedimentario de la Precordillera Oriental. Universidad Nacional de San Juan, Argentina.
    [Google Scholar]
  55. Milana, J.P. (1993) Estratigrafía de eólianitas en la zona de Jáchal–Huaco, Precordillera de San Juan. Asociación Geológica Argentina, Revista, 48, 283–298.
    [Google Scholar]
  56. Milana, J.P., Cevallos, M.F., Zavattieri, A.M., Prampano, M., Papu, H.O. (1993) La secuencia terciaria de Pachaco: sedimentología, edad, correlaciones y significado paleogeográfico. XII Congreso Geológico Argentino Y II Congreso Exploración Hidrocarburos, 1, 226–234.
    [Google Scholar]
  57. Parker, G. (1974) Posición estratigráfica del ‘Famatinense’ y sus correlaciones. Revista Asociación Geológica Argentina, 29, 231–247.
    [Google Scholar]
  58. Ramos, V.A. (1970) Estratigrafía y estructura del Terciario en la Sierra de los Colorados (Provincia de La Rioja), República Argentina. Asociación Geológica Argentina, Revista, 25, 359–382.
    [Google Scholar]
  59. Ramos, V.A., Cegarra, M., Lo Forte, G., Comínguez, A. (1997) El frente orogénico en la Sierra de Pedernal (San Juan, Argentina): su migración a través de los depósitos sinorogénicos. VIII Congreso Geológico Chileno, 3, 170–1713.
    [Google Scholar]
  60. Ramos, V.A. & Cristallini, E. (1995) Perfil estructural de la Precordillera a lo largo del Río San Juan. Andean Thrust Tectonics Symposium, Field Guide, San Juan, Argentina. pp. 1–42.
  61. Ramos, V.A., Jordan, T.E., Allmendginer, R.W., Mpodozis, C., Kay, S.M., Cortés, J.M., Palma, M. (1986) Paleozoic terranes of the Central Argentine‐Chilean Andes. Tectonics, 5, 855–880.
    [Google Scholar]
  62. Re, G.H. (1995) Evolución tectosedimentaria del depocentro de la Cuenca del Antepaís Andino (27° a 33°) y relación con el cambio en el ángulo de subducción de la Placa de Nazca.IX Congreso Latinoamericano de Geología. Ministerio de Energía y Minas, Caracas, Venezuela (published as a CD).
    [Google Scholar]
  63. Re, G.H. (1998) Magnetoestratigrafía y tasa de sedimentación de la Formación Toro Negro (Sierra de los Colorado, La Rioja). X Congreso Latinoamericano Geología Y VI Congreso Nacional Geología Económica, 1, 162.
    [Google Scholar]
  64. Re, G.H. & Vilas, J.F. (1990) Análisis de los cambios paleogeográficos ocurridos durante el Cenozoico tardío en la región de Vinchina (Provincia de La Rioja, Argentina), a partir de estudios magnetoestratigráficos. XI Congreso Geológico Argentina, 2, 267–270.
    [Google Scholar]
  65. Regnier, M., Chatelain, J.L., Smalley, R., Chiu, J.M., Isacks, B.L., Araujo, M. (1992) Seismotectonics of Sierra Pie de Palo, a basement block uplift in the Andean foreland of Argentina. Bull. Seismol. Soc. Am., 82, 2549–2571.
    [Google Scholar]
  66. Reynolds, J.H., Jordan, T.E., Johnson, N.M., Tabbutt, K.D. (1990) Neogene deformation of the flat‐subduction segment of the Argentine‐Chilean Andes: Chronological constraints from Las Juntas, Argentina. GSA Bull., 102, 1607–1622.
    [Google Scholar]
  67. Rodríguez Fernández, L.R., Heredia, N., Marín, G., Quesada, C., Robador, A., Ragona, D., Cardó, R. (1996) Tectonoestratigrafía y Estructura de los Andes Argentinos entre los 30°30′ y 31°00′ de latitud S. XIII Congreso Geológico Argentino Y III Congreso Exploración Hidrocarburos, 2, 111–124.
    [Google Scholar]
  68. Ruiz, F. & Introcaso, A. (1999) Resultados gravi‐magnetométricos sobre una sección que atravieza en 29°30′S a la cuenca Ischigualasto‐Villa Unión (San Juan y La Rioja). XIV Congreso Geológico Argentino. Actas I, Salta, 306–309.
  69. Salfity, J. & Gorustovich, S. (1983) Paleogeografía de la Cuenca del Grupo Paganzo (Paleozoico superior). Rev. Asoc. Geol. Argentina, 38, 437–453.
    [Google Scholar]
  70. Schlunegger, F. (1999) Controls of surface erosion of the Alps: constraints from the stratigraphies of the adjacent foreland basins. Int. J. Earth Sci., 88, 285–304.
    [Google Scholar]
  71. Schlunegger, F., Jordan, T.E., Klaper, E.M. (1997) Controls of erosional denudation in the orogen on foreland basin evolution; the Oligocene central Swiss Molasse Basin as an example. Tectonics, 16, 823–840.
    [Google Scholar]
  72. Sclater, J.G. & Christie, P.A.F. (1980) Continental stretching: an explanation of the post‐mid‐Cretaceous subsidence of the central North Sea basin. J. Geophys. Res., 85, 3711–3739.
    [Google Scholar]
  73. Smalley, R. & Isacks, B.L. (1990) Seismotectonics of thin‐ and thick‐Skinned deformation in the Andean Foreland from local network data: Evidence for a seismogenic lower crust. J. Geophys. Res., 95, 12487–12498.
    [Google Scholar]
  74. Smalley, R., Pujol, J., Regnier, M., Chiu, J.M., Chatelain, J.L., Isacks, B.L., Araujo, M., Puebla, N. (1993) Basement Seismicity beneath the Andean Precordillera thin‐skninned thrust belt and implication for crustal and lithospheric behavior. Tectonics, 12, 63–76.
    [Google Scholar]
  75. Stewart, J. & Watts, A.B. (1997) Gravity anomalies and spatial variations of flexural rigidity at mountain ranges. J. Geophys. Res., 102, 5327–5352.
    [Google Scholar]
  76. Stockmal, G.S. & Beaumont, C. (1987) Geodynamic models of convergent margin tectonics: The southern Canadial Cordillera and the Swiss Alps. Can. Soc. Petrol. Geol. Mem., 12, 393–411.
    [Google Scholar]
  77. Tabbutt, K., Naeser, C.W., Jordan, T.E., Cerveny, P.F. (1989) New fission‐track ages of Mio‐Pliocene tuffs in the Sierras Pampeanas and Precordillera of Argentina. Asoc. Geol. Argentina, Revista, 34, 408–419.
    [Google Scholar]
  78. Tassara, A. & Yañez, G. (1996) Thermomechanic segmentation of the Andes (15°–50°S): a flexural analysis approach. Third ISAG (International Symposium of Andean Geodynamics)St Malo, France, pp. 17–19.
  79. Timoshenko, S. & Woinowsky‐Krieger, S. (1959) Theory of Plates and Shells, 2nd edn. McGraw‐Hill.
    [Google Scholar]
  80. Turcotte, D.L. & Schubert, G. (1982) Geodynamics, Applications of Continuum Physics to Geological Problems. John Wiley & Sons, New York.
    [Google Scholar]
  81. Ugural, A.C. & Fenster, S.K. (1995) Advanced Strength and Applied Elasticity. Prentice Hall.
    [Google Scholar]
  82. Watts, A.B. (1992) The effective elastic thickness of the lithosphere and the evolution of foreland basins. Basin Res., 4, 169–178.
    [Google Scholar]
  83. Whiting, B.M. & Thomas, W.A. (1994) Three‐dimensional controls on subsidence of a foreland basin associated with a thrust belt recess: Black Warrior basin, Alabama and Mississippi. Geology, 22, 727–730.
    [Google Scholar]
  84. Yañez, G.A., Canuta, J., Tassara, A., Giavelli, A. (1995) Flexural analysis along the Southern Andes, between 12 degrees and 58 degrees S. Int. Union Geodesy Geophysics; XXI General Assembly; Abstracts, 21, 429.
    [Google Scholar]
  85. Zambrano, J., Sanchez, A., Hernandez, M. (1996) Aspectos estratigraficos y estructurales del sector Gualcamayo‐Guandacol (Provincia de La Rioja y San Juan‐Argentina) relacionados con la exploracion minera metalifera. XIII Congreso Geologico Argentino Y III Congreso Exploracion Hidrocarburos, 1, 531–540.
    [Google Scholar]
  86. Zapata, T.R. (1996) Crustal Evolution of the Precordillera Thrust Belt–Bermejo Basin, Argentina . PhD Thesis, Cornell University, 243.
  87. Zapata, T.R. (1998) Crustal structure of the Andean thrust front an 30°S latitude from shallow and deep seismic reflection profiles, Argentina. J. South Am. Earth Sci., 11, 131–151.
    [Google Scholar]
  88. Zapata, T.R. & Allmendinger, R.W. (1996a) Growth stratal records of instantaneous and progressive limb rotation in the Precordillera thrust belt and Bermejo basin, Argentina. Tectonics, 15, 1065–1083.
    [Google Scholar]
  89. Zapata, T.R. & Allmendinger, R.W. (1996b) The thrust front zone of the Precordillera, Argentina: a thick‐skinned triangle zone. Am. Assoc. Petrol. Geol. Bull., 80, 359–381.
    [Google Scholar]
  90. Zienkiewicz, O.C. (1977) The Finite Element Method. McGraw‐Hill.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1046/j.0950-091x.2001.00154.x
Loading
/content/journals/10.1046/j.0950-091x.2001.00154.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error